Institute of Photonics and Nanotechnology, Vilnius University, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania.
Laboratoire Ondes et Matiére d'Aquitaine, Bordeaux University, UMR CNRS 5798, 351 cours de la Libération, 33405 Talence, France.
Phys Chem Chem Phys. 2023 Jan 18;25(3):2411-2419. doi: 10.1039/d2cp04250a.
Two new twisted intramolecular charge transfer (TICT) donor-π-acceptor compounds were designed by combining a well-known electron acceptor naphthalimide unit with a classic electron donor dimethylaniline through two types of different rigid linkers. The combined steady-state and time-resolved spectroscopy of molecules in solvents of different polarities in comparison to solid-state solvation experiments of doped polymer matrixes of different polarities allowed distinguishing between solvation and conformation determined processes. The photophysical measurements revealed that non-polar solutions possess high fluorescence quantum yields of up to 70% which is a property of pre-twisted/planar molecules in the excited charge transfer (CT) states. The increase of polarity allows tuning the Stokes shift through all the visible wavelength range up to 8601 cm which is accompanied by a three orders of magnitude drop of fluorescence quantum yields. This is a result of the emerged TICT states as dimethylaniline twists to a perpendicular position against the naphthalimide core. The TICT reaction of molecules enables an additional non-radiative excitation decay channel, which is not present if the twisting is forbidden in a rigid polymer matrix. Transient absorption spectroscopy was employed to visualize the excited state dynamics and to obtain the excited state reaction constants, revealing that TICT may occur from both the Franck-Condon region and the solvated pre-twisted/planar CT states. Both molecules undergo the same photophysical processes, however, a longer linker and thus a higher excited state dipole moment determines the faster excited state reactions.
设计了两个新的扭曲的分子内电荷转移(TICT)给体-π-受体化合物,方法是通过两种不同的刚性连接体将一个众所周知的电子受体萘酰亚胺单元与经典的电子给体二甲苯胺结合在一起。与不同极性掺杂聚合物基质的固态溶剂化实验相比,在不同极性溶剂中分子的稳态和时间分辨光谱的比较允许区分溶剂化和构象决定的过程。光物理测量表明,非极性溶液具有高达 70%的高荧光量子产率,这是在激发电荷转移(CT)态下预扭曲/平面分子的特性。极性的增加允许通过整个可见波长范围调谐斯托克斯位移,直到 8601cm,同时荧光量子产率下降三个数量级。这是由于二甲苯胺扭曲到与萘酰亚胺核心垂直的位置,从而产生 TICT 态。分子的 TICT 反应能够提供一个额外的非辐射激发衰减通道,如果在刚性聚合物基质中扭转被禁止,则不会存在该通道。瞬态吸收光谱被用来可视化激发态动力学,并获得激发态反应常数,表明 TICT 可能从 Franck-Condon 区域和溶剂化的预扭曲/平面 CT 态发生。两个分子都经历相同的光物理过程,然而,较长的连接体和因此更高的激发态偶极矩决定了更快的激发态反应。