Suppr超能文献

朝着单颗粒冷冻电镜数据采集自动化的方向发展。

Towards automating single-particle cryo-EM data acquisition.

机构信息

Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany.

出版信息

IUCrJ. 2023 Jan 1;10(Pt 1):4-5. doi: 10.1107/S2052252522012039.

Abstract

Target selection for single-particle cryo-EM data acquisition sessions is mostly done manually by human operators, which is time consuming and leads to the inefficient use of instruments. The software toolbox [Kim (2023). , , 90–102] provides solutions for automated target selection for cryo-EM imaging.

摘要

针对单颗粒冷冻电镜数据采集的靶标选择主要由人工操作人员手动完成,这既耗时又导致仪器使用效率低下。软件工具包 [Kim(2023 年),,90-102] 为冷冻电镜成像的自动靶标选择提供了解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b47/9812215/3819a404a5b7/m-10-00004-fig1.jpg

相似文献

1
Towards automating single-particle cryo-EM data acquisition.
IUCrJ. 2023 Jan 1;10(Pt 1):4-5. doi: 10.1107/S2052252522012039.
2
3
DeepPicker: A deep learning approach for fully automated particle picking in cryo-EM.
J Struct Biol. 2016 Sep;195(3):325-336. doi: 10.1016/j.jsb.2016.07.006. Epub 2016 Jul 14.
4
Automated particle picking for low-contrast macromolecules in cryo-electron microscopy.
J Struct Biol. 2014 Apr;186(1):1-7. doi: 10.1016/j.jsb.2014.03.001. Epub 2014 Mar 6.
5
A Super-Clustering Approach for Fully Automated Single Particle Picking in Cryo-EM.
Genes (Basel). 2019 Aug 30;10(9):666. doi: 10.3390/genes10090666.
6
Single-particle cryo-EM data acquisition by using direct electron detection camera.
Microscopy (Oxf). 2016 Feb;65(1):35-41. doi: 10.1093/jmicro/dfv355. Epub 2015 Nov 6.
7
DeepCryoPicker: fully automated deep neural network for single protein particle picking in cryo-EM.
BMC Bioinformatics. 2020 Nov 9;21(1):509. doi: 10.1186/s12859-020-03809-7.
8
A large expert-curated cryo-EM image dataset for machine learning protein particle picking.
Sci Data. 2023 Jun 22;10(1):392. doi: 10.1038/s41597-023-02280-2.
9
Auto3DCryoMap: an automated particle alignment approach for 3D cryo-EM density map reconstruction.
BMC Bioinformatics. 2020 Dec 28;21(Suppl 21):534. doi: 10.1186/s12859-020-03885-9.
10
Deep-learning with synthetic data enables automated picking of cryo-EM particle images of biological macromolecules.
Bioinformatics. 2020 Feb 15;36(4):1252-1259. doi: 10.1093/bioinformatics/btz728.

本文引用的文献

1
Learning to automate cryo-electron microscopy data collection with Ptolemy.
IUCrJ. 2023 Jan 1;10(Pt 1):90-102. doi: 10.1107/S2052252522010612.
2
Fully automated multi-grid cryoEM screening using Smart Leginon.
IUCrJ. 2023 Jan 1;10(Pt 1):77-89. doi: 10.1107/S2052252522010624.
3
Automated systematic evaluation of cryo-EM specimens with SmartScope.
Elife. 2022 Aug 23;11:e80047. doi: 10.7554/eLife.80047.
4
Understanding the invisible hands of sample preparation for cryo-EM.
Nat Methods. 2021 May;18(5):463-471. doi: 10.1038/s41592-021-01130-6. Epub 2021 May 7.
5
Real-time cryo-electron microscopy data preprocessing with Warp.
Nat Methods. 2019 Nov;16(11):1146-1152. doi: 10.1038/s41592-019-0580-y. Epub 2019 Oct 7.
6
Protein denaturation at the air-water interface and how to prevent it.
Elife. 2019 Apr 1;8:e42747. doi: 10.7554/eLife.42747.
8
Routine single particle CryoEM sample and grid characterization by tomography.
Elife. 2018 May 29;7:e34257. doi: 10.7554/eLife.34257.
9
TEM, user-friendly software for single-particle image processing.
Elife. 2018 Mar 7;7:e35383. doi: 10.7554/eLife.35383.
10
cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination.
Nat Methods. 2017 Mar;14(3):290-296. doi: 10.1038/nmeth.4169. Epub 2017 Feb 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验