Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
Department of Bioengineering and Therapeutic Sciences, School of Pharmacy, University of California San Francisco, San Francisco, CA, USA.
Nature. 2023 Feb;614(7947):326-333. doi: 10.1038/s41586-022-05613-0. Epub 2023 Jan 4.
Multiple sclerosis is a chronic inflammatory disease of the central nervous system. Astrocytes are heterogeneous glial cells that are resident in the central nervous system and participate in the pathogenesis of multiple sclerosis and its model experimental autoimmune encephalomyelitis. However, few unique surface markers are available for the isolation of astrocyte subsets, preventing their analysis and the identification of candidate therapeutic targets; these limitations are further amplified by the rarity of pathogenic astrocytes. Here, to address these challenges, we developed focused interrogation of cells by nucleic acid detection and sequencing (FIND-seq), a high-throughput microfluidic cytometry method that combines encapsulation of cells in droplets, PCR-based detection of target nucleic acids and droplet sorting to enable in-depth transcriptomic analyses of cells of interest at single-cell resolution. We applied FIND-seq to study the regulation of astrocytes characterized by the splicing-driven activation of the transcription factor XBP1, which promotes disease pathology in multiple sclerosis and experimental autoimmune encephalomyelitis. Using FIND-seq in combination with conditional-knockout mice, in vivo CRISPR-Cas9-driven genetic perturbation studies and bulk and single-cell RNA sequencing analyses of samples from mouse experimental autoimmune encephalomyelitis and humans with multiple sclerosis, we identified a new role for the nuclear receptor NR3C2 and its corepressor NCOR2 in limiting XBP1-driven pathogenic astrocyte responses. In summary, we used FIND-seq to identify a therapeutically targetable mechanism that limits XBP1-driven pathogenic astrocyte responses. FIND-seq enables the investigation of previously inaccessible cells, including rare cell subsets defined by unique gene expression signatures or other nucleic acid markers.
多发性硬化症是一种中枢神经系统的慢性炎症性疾病。星形胶质细胞是中枢神经系统中特有的异质性神经胶质细胞,参与多发性硬化症及其实验性自身免疫性脑脊髓炎的发病机制。然而,用于分离星形胶质细胞亚群的独特表面标志物很少,这阻碍了对其的分析和候选治疗靶点的鉴定;这些局限性由于致病性星形胶质细胞的罕见性而进一步放大。在这里,为了解决这些挑战,我们开发了核酸检测和测序的靶向细胞分析(FIND-seq),这是一种高通量微流控细胞术方法,它结合了细胞在液滴中的包封、基于 PCR 的靶核酸检测和液滴分选,以实现对感兴趣细胞的单细胞分辨率的深入转录组分析。我们应用 FIND-seq 来研究由转录因子 XBP1 的剪接驱动的星形胶质细胞的调节,该转录因子在多发性硬化症和实验性自身免疫性脑脊髓炎中促进疾病病理。使用 FIND-seq 结合条件性敲除小鼠、体内 CRISPR-Cas9 驱动的遗传干扰研究以及来自实验性自身免疫性脑脊髓炎的小鼠和多发性硬化症患者的批量和单细胞 RNA 测序分析,我们确定了核受体 NR3C2 和其核心抑制物 NCOR2 在限制 XBP1 驱动的致病性星形胶质细胞反应中的新作用。总之,我们使用 FIND-seq 鉴定了一种可治疗的靶向机制,限制了 XBP1 驱动的致病性星形胶质细胞反应。FIND-seq 能够研究以前无法进入的细胞,包括通过独特的基因表达特征或其他核酸标记定义的罕见细胞亚群。