Suppr超能文献

对菲律宾裔美国人 2 型糖尿病风险人群转录组高维数据进行特征选择和分类器预测体重减轻的预测性能。

Prediction Performance of Feature Selectors and Classifiers on Highly Dimensional Transcriptomic Data for Prediction of Weight Loss in Filipino Americans at Risk for Type 2 Diabetes.

机构信息

Department of Physiological Nursing, University of California San Francisco, San Francisco, CA, USA.

Keck Graduate Institute, Claremont, CA, USA.

出版信息

Biol Res Nurs. 2023 Jul;25(3):393-403. doi: 10.1177/10998004221147513. Epub 2023 Jan 4.

Abstract

Accurate prediction of risk for chronic diseases like type 2 diabetes (T2D) is challenging due to the complex underlying etiology. Integration of more complex data types from sensors and leveraging technologies for collection of -omics datasets may provide greater insights into the specific risk profile for complex diseases. We performed a literature review to identify feature selection methods and machine learning models for prediction of weight loss in a previously completed clinical trial (NCT02278939) of a behavioral intervention for weight loss in Filipinos at risk for T2D. Features included demographic and clinical characteristics, dietary factors, physical activity, and transcriptomics. We identified four feature selection methods: Correlation-based Feature Subset Selection (CfsSubsetEval) with BestFirst, Kolmogorov-Smirnov (KS) test with correlation featureselection (CFS), DESeq2, and max-relevance-min-relevance (MRMR) with linear forward search and mutual information (MI) and four machine learning algorithms: support vector machine, decision tree, random forest, and extra trees that are applicable to prediction of weight loss using the specified feature types. More accurate prediction of risk for T2D and other complex conditions may be possible by leveraging complex data types from sensors and -omics datasets. Emerging methods for feature selection and machine learning algorithms make this type of modeling feasible.

摘要

由于复杂的潜在病因,准确预测 2 型糖尿病(T2D)等慢性疾病的风险具有挑战性。整合来自传感器的更复杂数据类型,并利用技术来收集组学数据集,可能会更深入地了解复杂疾病的特定风险概况。我们进行了文献回顾,以确定特征选择方法和机器学习模型,用于预测先前完成的一项针对菲律宾 T2D 风险人群的减肥行为干预临床试验(NCT02278939)中的体重减轻情况。特征包括人口统计学和临床特征、饮食因素、身体活动和转录组学。我们确定了四种特征选择方法:基于相关性的特征子集选择(CfsSubsetEval)与最佳优先(BestFirst)、柯尔莫哥洛夫-斯米尔诺夫(KS)测试与相关性特征选择(CFS)、DESeq2 和最大相关性-最小相关性(MRMR)与线性前向搜索和互信息(MI),以及四种适用于使用指定特征类型预测体重减轻的机器学习算法:支持向量机、决策树、随机森林和极端树。通过利用来自传感器和组学数据集的复杂数据类型,可能更准确地预测 T2D 和其他复杂疾病的风险。新兴的特征选择方法和机器学习算法使这种类型的建模成为可能。

相似文献

本文引用的文献

1
MRC2 Promotes Proliferation and Inhibits Apoptosis of Diabetic Nephropathy.MRC2 促进糖尿病肾病增殖并抑制细胞凋亡。
Anal Cell Pathol (Amst). 2021 Apr 28;2021:6619870. doi: 10.1155/2021/6619870. eCollection 2021.
3
Hands-on training about overfitting.过拟合的实操训练。
PLoS Comput Biol. 2021 Mar 4;17(3):e1008671. doi: 10.1371/journal.pcbi.1008671. eCollection 2021 Mar.
4
Improving Accuracy for Diabetes Mellitus Prediction by Using Deepnet.使用深度网络提高糖尿病预测的准确性。
Online J Public Health Inform. 2020 Jul 24;12(1):e11. doi: 10.5210/ojphi.v12i1.10611. eCollection 2020.
9
Machine learning in medicine: a practical introduction.医学中的机器学习:实用入门
BMC Med Res Methodol. 2019 Mar 19;19(1):64. doi: 10.1186/s12874-019-0681-4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验