Suppr超能文献

超薄层状稀土氢氧化物纳米片上的多种相互作用使对全氟辛烷磺酸具有高亲和力:修复性能和分子水平见解

Multiple interactions steered high affinity toward PFAS on ultrathin layered rare-earth hydroxide nanosheets: Remediation performance and molecular-level insights.

作者信息

Tan Xianjun, Jiang Zhenying, Ding Wenhui, Zhang Mingkun, Huang Yuxiong

机构信息

Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.

Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.

出版信息

Water Res. 2023 Feb 15;230:119558. doi: 10.1016/j.watres.2022.119558. Epub 2022 Dec 30.

Abstract

The global occurrence of per- and polyfluoroalkyl substances (PFAS) in aquatic systems has raised concerns about their adverse effects on ecosystems and human health. Adsorption is a promising technique for the remediation of PFAS, yet effective adsorbents with rapid uptake kinetics and high adsorption capacity are still in high demand, and molecular-level understanding of the interfacial adsorption mechanisms is lacking. In this study, we developed a superior layered rare-earth hydroxide (LRH) adsorbent, ultrathin Y(OH)Cl·1·07HO (namely YOHCl) nanosheets, to achieve the effective removal of perfluorooctanoic acid (PFOA). YOHCl nanosheets exhibited ultra-high adsorption capacity toward PFOA (up to 957.1 mg/g), which is 1.9 times and 9.3 times higher than the state-of-the-art layered double hydroxides (MgAl-LDH) and benchmark granular activated carbon (GAC) under the same conditions, respectively. Furthermore, YOHCl nanosheets pose stable performance on the removal of PFOA under various water matrices with robust reusability. We also developed YOHCl-based continuous-flow column, demonstrating its promise in simultaneously removing multiple PFAS with wide range of chain lengths at environmentally relevant concentrations. With the molecular-level investigations, we have revealed that multi-mechanism, including ion exchange, electrostatic attraction and bidentate/bridging coordination, contributed to the strong PFOA-YOHCl affinity, leading to the ultra-high adsorption capacity of PFOA. We have provided emerging LRHs-based adsorbents for the effective remediation of PFAS with molecular-level insights on the interfacial mechanisms.

摘要

全氟和多氟烷基物质(PFAS)在全球水生系统中的出现引发了人们对其对生态系统和人类健康不利影响的担忧。吸附是一种很有前景的PFAS修复技术,但仍迫切需要具有快速吸附动力学和高吸附容量的有效吸附剂,而且缺乏对界面吸附机制的分子层面理解。在本研究中,我们开发了一种优质的层状稀土氢氧化物(LRH)吸附剂——超薄Y(OH)Cl·1·07H₂O(即YOHCl)纳米片,以实现对全氟辛酸(PFOA)的有效去除。YOHCl纳米片对PFOA表现出超高的吸附容量(高达957.1 mg/g),在相同条件下分别比最先进的层状双氢氧化物(MgAl-LDH)和基准颗粒活性炭(GAC)高1.9倍和9.3倍。此外,YOHCl纳米片在各种水基质中对PFOA的去除具有稳定性能且具有强大的可重复使用性。我们还开发了基于YOHCl的连续流柱,证明了其在环境相关浓度下同时去除多种链长范围广泛的PFAS的潜力。通过分子层面的研究,我们揭示了包括离子交换、静电吸引和双齿/桥连配位在内的多种机制促成了PFOA与YOHCl之间的强亲和力,从而导致PFOA的超高吸附容量。我们提供了基于新型LRH的吸附剂,用于有效修复PFAS,并对界面机制有分子层面的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验