Suppr超能文献

镁铝层状双氢氧化物纳米花作为一种用于高性能湿度传感的新型传感材料。

MgAl-LDH nanoflowers as a novel sensing material for high-performance humidity sensing.

作者信息

Wang Luyu, Song Jia, Yu Chunyang

机构信息

College of Artificial Intelligence and E-Commerce, Zhejiang Gongshang University Hangzhou College of Commerce Hangzhou 311599 China

School of Nuclear Science and Engineering, Shanghai Jiao Tong University Shanghai 200240 China

出版信息

RSC Adv. 2024 Jul 11;14(30):21991-21998. doi: 10.1039/d4ra03800b. eCollection 2024 Jul 5.

Abstract

This work details a novel application of MgAl-LDH nanoflowers, applied in the fabrication of humidity sensors using quartz crystal microbalance (QCM). An oscillating circuit approach has been utilized to thoroughly investigate the humidity detection characteristics of QCM sensors that are fabricated using MgAl-LDH nanoflowers. The examination encompassed various parameters such as the sensors' response, humidity hysteresis, repeatability, and stability. Experimental results clearly indicate that these MgAl-LDH nanoflower-based QCM sensors exhibit a distinct logarithmic frequency response to varying moisture levels. Notably, the sensitivity of the sensors is intricately tied to the amount of MgAl-LDH nanoflowers utilized during the deposition process. Moreover, these sensors maintain remarkable stability across a wide humidity range spanning from 11% to 97% RH. Additionally, the MgAl-LDH nanoflower-based QCM sensors possess minimal humidity hysteresis and display swift dynamic response and recovery periods, further highlighting their potential for humidity detection applications.

摘要

这项工作详细介绍了MgAl-LDH纳米花的一种新应用,该应用用于使用石英晶体微天平(QCM)制造湿度传感器。采用振荡电路方法全面研究了使用MgAl-LDH纳米花制造的QCM传感器的湿度检测特性。检查包括各种参数,如传感器的响应、湿度滞后、重复性和稳定性。实验结果清楚地表明,这些基于MgAl-LDH纳米花的QCM传感器对不同的湿度水平呈现出明显的对数频率响应。值得注意的是,传感器的灵敏度与沉积过程中使用的MgAl-LDH纳米花的量密切相关。此外,这些传感器在11%至97%RH的宽湿度范围内保持了显著的稳定性。此外,基于MgAl-LDH纳米花的QCM传感器具有最小的湿度滞后,并显示出快速的动态响应和恢复时间,进一步突出了它们在湿度检测应用中的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9350/11238630/863940d88e53/d4ra03800b-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验