Suppr超能文献

检测评分者间一致性研究中的灰色地带。

Detection of grey zones in inter-rater agreement studies.

机构信息

Mathematical Sciences Discipline, School of Science, RMIT University, Melbourne, 3000, Victoria, Australia.

Department of Statistics, Hacettepe University, Beytepe, Ankara, 06000, Turkey.

出版信息

BMC Med Res Methodol. 2023 Jan 5;23(1):3. doi: 10.1186/s12874-022-01759-7.

Abstract

BACKGROUND

In inter-rater agreement studies, the assessment behaviour of raters can be influenced by their experience, training levels, the degree of willingness to take risks, and the availability of clear guidelines for the assessment. When the assessment behaviour of raters differentiates for some levels of an ordinal classification, a grey zone occurs between the corresponding adjacent cells to these levels around the main diagonal of the table. A grey zone introduces a negative bias to the estimate of the agreement level between the raters. In that sense, it is crucial to detect the existence of a grey zone in an agreement table.

METHODS

In this study, a framework composed of a metric and the corresponding threshold is developed to identify grey zones in an agreement table. The symmetry model and Cohen's kappa are used to define the metric, and the threshold is based on a nonlinear regression model. A numerical study is conducted to assess the accuracy of the developed framework. Real data examples are provided to illustrate the use of the metric and the impact of identifying a grey zone.

RESULTS

The sensitivity and specificity of the proposed framework are shown to be very high under moderate, substantial, and near-perfect agreement levels for [Formula: see text] and [Formula: see text] tables and sample sizes greater than or equal to 100 and 50, respectively. Real data examples demonstrate that when a grey zone is detected in the table, it is possible to report a notably higher level of agreement in the studies.

CONCLUSIONS

The accuracy of the proposed framework is sufficiently high; hence, it provides practitioners with a precise way to detect the grey zones in agreement tables.

摘要

背景

在评分者间一致性研究中,评分者的评估行为可能受到其经验、培训水平、冒险意愿程度以及评估清晰指南的可用性的影响。当评分者的评估行为在有序分类的某些水平上存在差异时,在表的主对角线周围对应相邻单元格与这些水平之间会出现一个灰色地带。灰色地带会对评分者之间一致性水平的估计产生负面影响。从这个意义上说,检测到一致表中存在灰色地带是至关重要的。

方法

在这项研究中,开发了一个由度量标准和相应阈值组成的框架,以识别一致表中的灰色地带。对称模型和 Cohen's kappa 用于定义度量标准,阈值基于非线性回归模型。进行了一项数值研究来评估所开发框架的准确性。提供了真实数据示例来说明度量标准的使用以及识别灰色地带的影响。

结果

对于 [Formula: see text] 和 [Formula: see text] 表以及样本量大于或等于 100 和 50 的情况下,在中度、大量和近乎完美的一致性水平下,所提出框架的灵敏度和特异性被证明非常高。真实数据示例表明,当在表中检测到灰色地带时,有可能在研究中报告更高水平的一致性。

结论

所提出框架的准确性足够高;因此,它为从业者提供了一种精确的方法来检测一致表中的灰色地带。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e6/9814438/db788c3ae315/12874_2022_1759_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验