Wan Charles Tai-Chieh, Ismail Akram, Quinn Alexander H, Chiang Yet-Ming, Brushett Fikile R
Joint Center for Energy Storage Research, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States.
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States.
Langmuir. 2023 Jan 6. doi: 10.1021/acs.langmuir.2c03003.
Redox flow batteries (RFBs) are a promising electrochemical technology for the efficient and reliable delivery of electricity, providing opportunities to integrate intermittent renewable resources and to support unreliable and/or aging grid infrastructure. Within the RFB, porous carbonaceous electrodes facilitate the electrochemical reactions, distribute the flowing electrolyte, and conduct electrons. Understanding electrode reaction kinetics is crucial for improving RFB performance and lowering costs. However, assessing reaction kinetics on porous electrodes is challenging as their complex structure frustrates canonical electroanalytical techniques used to quantify performance descriptors. Here, we outline a strategy to estimate electron transfer kinetics on planar electrode materials of similar surface chemistry to those used in RFBs. First, we describe a bottom-up synthetic process to produce flat, dense carbon films to enable the evaluation of electron transfer kinetics using traditional electrochemical approaches. Next, we characterize the physicochemical properties of the films using a suite of spectroscopic methods, confirming that their surface characteristics align with those of widely used porous electrodes. Last, we study the electrochemical performance of the films in a custom-designed cell architecture, extracting intrinsic heterogeneous kinetic rate constants for two iron-based redox couples in aqueous electrolytes using standard electrochemical methods (i.e., cyclic voltammetry, electrochemical impedance, and spectroscopy). We anticipate that the synthetic methods and experimental protocols described here are applicable to a range of electrocatalysts and redox couples.
氧化还原液流电池(RFBs)是一种很有前景的电化学技术,可高效可靠地供电,为整合间歇性可再生资源以及支持不可靠和/或老化的电网基础设施提供了机会。在RFB内,多孔碳质电极促进电化学反应,分布流动的电解质并传导电子。了解电极反应动力学对于提高RFB性能和降低成本至关重要。然而,评估多孔电极上的反应动力学具有挑战性,因为其复杂结构阻碍了用于量化性能描述符的传统电分析技术。在此,我们概述了一种策略,用于估计与RFB中使用的电极材料具有相似表面化学性质的平面电极材料上的电子转移动力学。首先,我们描述了一种自下而上的合成过程,以制备平坦、致密的碳膜,以便能够使用传统电化学方法评估电子转移动力学。接下来,我们使用一系列光谱方法表征膜的物理化学性质,确认其表面特性与广泛使用的多孔电极的表面特性一致。最后,我们在定制设计的电池结构中研究膜的电化学性能,使用标准电化学方法(即循环伏安法、电化学阻抗和光谱法)提取水性电解质中两种铁基氧化还原对的固有异质动力学速率常数。我们预计这里描述的合成方法和实验方案适用于一系列电催化剂和氧化还原对。