Suppr超能文献

采用治疗决策规则的逆序对非小细胞肺癌患者进行分层:利用电子健康记录进行验证,并应用于管理型数据库。

Stratifying non-small cell lung cancer patients using an inverse of the treatment decision rules: validation using electronic health records with application to an administrative database.

机构信息

Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA.

Department of Preventive Medicine and Family Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea.

出版信息

BMC Med Inform Decis Mak. 2023 Jan 6;23(1):3. doi: 10.1186/s12911-022-02088-x.

Abstract

BACKGROUND

To validate a stratification method using an inverse of treatment decision rules that can classify non-small cell lung cancer (NSCLC) patients in real-world treatment records.

METHODS

(1) To validate the index classifier against the TNM 7th edition, we analyzed electronic health records of NSCLC patients diagnosed from 2011 to 2015 in a tertiary referral hospital in Seoul, Korea. Predictive accuracy, stage-specific sensitivity, specificity, positive predictive value, negative predictive value, F1 score, and c-statistic were measured. (2) To apply the index classifier in an administrative database, we analyzed NSCLC patients in Korean National Health Insurance Database, 2002-2013. Differential survival rates among the classes were examined with the log-rank test, and class-specific survival rates were compared with the reference survival rates.

RESULTS

(1) In the validation study (N = 1375), the overall accuracy was 93.8% (95% CI: 92.5-95.0%). Stage-specific c-statistic was the highest for stage I (0.97, 95% CI: 0.96-0.98) and the lowest for stage III (0.82, 95% CI: 0.77-0.87). (2) In the application study (N = 71,593), the index classifier showed a tendency for differentiating survival probabilities among classes. Compared to the reference TNM survival rates, the index classification under-estimated the survival probability for stages IA, IIIB, and IV, and over-estimated it for stages IIA and IIB.

CONCLUSION

The inverse of the treatment decision rules has a potential to supplement a routinely collected database with information encoded in the treatment decision rules to classify NSCLC patients. It requires further validation and replication in multiple clinical settings.

摘要

背景

验证一种使用治疗决策规则逆的分层方法,该方法可以对真实世界治疗记录中的非小细胞肺癌(NSCLC)患者进行分类。

方法

(1)为了验证指数分类器与第 7 版 TNM 的一致性,我们分析了韩国首尔一家三级转诊医院 2011 年至 2015 年间诊断的 NSCLC 患者的电子健康记录。测量了预测准确性、特定分期的敏感性、特异性、阳性预测值、阴性预测值、F1 评分和 c 统计量。(2)为了在行政数据库中应用指数分类器,我们分析了 2002 年至 2013 年韩国国家健康保险数据库中的 NSCLC 患者。通过对数秩检验检验了各分类之间的差异生存率,并与参考生存率比较了各分类的生存率。

结果

(1)在验证研究中(N=1375),整体准确性为 93.8%(95%CI:92.5-95.0%)。特定分期的 c 统计量在 I 期最高(0.97,95%CI:0.96-0.98),在 III 期最低(0.82,95%CI:0.77-0.87)。(2)在应用研究中(N=71593),指数分类器显示出在各分类之间区分生存概率的趋势。与参考 TNM 生存率相比,指数分类对 IA、IIIB 和 IV 期的生存概率低估,对 IIA 和 IIB 期的生存概率高估。

结论

治疗决策规则的逆可以潜在地将治疗决策规则中编码的信息补充到常规收集的数据库中,以对 NSCLC 患者进行分类。它需要在多个临床环境中进一步验证和复制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7ad/9825000/562fe8217a18/12911_2022_2088_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验