State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian, 116023, P. R. China.
University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
Nat Commun. 2023 Jan 7;14(1):112. doi: 10.1038/s41467-023-35785-w.
The removal of nitric oxide is an important environmental issue, as well as a necessary prerequisite for achieving high efficiency of CO electroreduction. To this end, the electrocatalytic denitrification is a sustainable route. Herein, we employ reaction phase diagram to analyze the evolution of reaction mechanisms over varying catalysts and study the potential/pH effects over Pd and Cu. We find the low N selectivity compared to NO production, consistent with a set of experiments, is limited fundamentally by two factors. The NOH* binding is relatively weak over transition metals, resulting in the low rate of as-produced NO* protonation. The strong correlation of OH* and O* binding energies limits the route of NO* dissociation. Although the experimental conditions of varying potential, pH and NO pressures can tune the selectivity slightly, which are insufficient to promote N selectivity beyond NO and NH. A possible solution is to design catalysts with exceptions to break the scaling characters of energies. Alternatively, we propose a reverse route with the target of decentralized ammonia synthesis.
一氧化氮的去除是一个重要的环境问题,也是实现 CO 电催化还原高效率的必要前提。为此,电催化脱硝是一种可持续的途径。在这里,我们利用反应相图来分析不同催化剂上反应机制的演变,并研究 Pd 和 Cu 上的电势/pH 效应。我们发现,与 NO 生成相比,低 N 选择性,与一系列实验结果一致,从根本上受到两个因素的限制。过渡金属上的 NOH结合较弱,导致生成的 NO质子化的速率较低。OH和 O结合能的强相关性限制了 NO*的离解途径。尽管实验条件可以通过改变电势、pH 值和 NO 压力来略微调节选择性,但这不足以将 N 选择性提高到超过 NO 和 NH。一种可能的解决方案是设计具有例外情况的催化剂,以打破能量的标度特征。或者,我们提出了一条反向路线,目标是分散合成氨。