Chan Karen, Nørskov Jens K
†Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States.
‡SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States.
J Phys Chem Lett. 2015 Jul 16;6(14):2663-8. doi: 10.1021/acs.jpclett.5b01043. Epub 2015 Jun 24.
A major challenge in the theoretical treatment of electrochemical charge transfer barriers is that simulations are performed at constant charge, which leads to dramatic potential shifts along the reaction path. Real electrochemical systems, however, operate at constant potential, which corresponds to a hypothetical model system of infinite size. Previous studies of hydrogen evolution have relied on a computationally costly scheme that extrapolates the barriers calculated on increasingly larger cells, and extension of this scheme to more complex reactions would be prohibitively costly. We present a new method to determine constant potential reaction energetics for simple charge transfer reactions that requires only (1) a single barrier calculation in an electrochemical environment and (2) the corresponding surface charge at the initial, transition, and final states. This method allows for a tremendous reduction in the computational resources required to determine electrochemical barriers and paves the way for a rigorous DFT-based kinetic analysis of electrochemical reactions beyond hydrogen evolution.
电化学电荷转移势垒理论处理中的一个主要挑战是,模拟是在恒定电荷下进行的,这会导致沿反应路径出现显著的电位偏移。然而,实际的电化学系统是在恒定电位下运行的,这相当于一个无限大小的假设模型系统。先前关于析氢的研究依赖于一种计算成本高昂的方案,该方案通过外推在越来越大的电池上计算出的势垒,而将此方案扩展到更复杂的反应将成本过高。我们提出了一种新方法,用于确定简单电荷转移反应的恒电位反应能量学,该方法只需要(1)在电化学环境中进行一次势垒计算,以及(2)初始、过渡和最终状态下的相应表面电荷。这种方法可以极大地减少确定电化学势垒所需的计算资源,并为基于密度泛函理论(DFT)对析氢以外的电化学反应进行严格的动力学分析铺平道路。