Suppr超能文献

利用声发射技术进行圆柱形容器罐底泄漏定位

Leak Localization on Cylinder Tank Bottom Using Acoustic Emission.

机构信息

Department of Electrical, Electronics, and Computer Engineering, University of Ulsan, Ulsan 44610, Republic of Korea.

PD Technology Cooperation, Ulsan 44610, Republic of Korea.

出版信息

Sensors (Basel). 2022 Dec 20;23(1):27. doi: 10.3390/s23010027.

Abstract

In this study, a scheme for leak localization on a cylinder tank bottom using acoustic emission (AE) is proposed. This approach provides a means of early failure detection, thus reducing financial damage and hazards to the environment and users. The scheme starts with the hit detection process using a constant false alarm rate (CFAR) and a fixed thresholding method for a time of arrival (TOA) and an end-time determination. The detected hits are then investigated to group those originating from the same AE source together by enforcing an event definition and a similarity score. Afterwards, these newly grouped hits are processed by a time difference of arrival (TDOA) to find the locations of the events. Since the locations of the events alone do not pinpoint the leak location, a data density analysis using a Voronoi diagram is employed to find the area with the highest possibility of a leak's existence. The proposed method was validated using the Hsu-Nielsen test on a cylinder tank bottom under a one-failed-sensor scenario, which returned a highly accurate result across multiple test locations.

摘要

本研究提出了一种利用声发射(AE)对圆柱罐底进行泄漏定位的方案。该方法提供了一种早期故障检测手段,从而减少了经济损失以及对环境和使用者造成的危害。该方案首先使用恒虚警率(CFAR)和固定阈值方法进行命中检测,以确定到达时间(TOA)和结束时间。然后,对检测到的命中进行调查,通过强制事件定义和相似度得分,将来自同一 AE 源的命中分组在一起。然后,通过时差(TDOA)对这些新分组的命中进行处理,以找到事件的位置。由于事件的位置本身并不能精确定位泄漏位置,因此使用 Voronoi 图进行数据密度分析,以找到泄漏存在可能性最高的区域。该方法在一个传感器失效的圆柱罐底上进行了 Hsu-Nielsen 测试验证,在多个测试位置都得到了非常准确的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6bb6/9823355/deda041004ea/sensors-23-00027-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验