Kim Gyungbu, Lee Yoonsuk, Park Jeong Ho, Kim Dongmin, Lee Wonseok
Medical Genomics R&D, JLK, Seoul 06141, Korea.
Genomics Inform. 2022 Dec;20(4):e49. doi: 10.5808/gi.22046. Epub 2022 Dec 30.
Many packages for a meta-analysis of genome-wide association studies (GWAS) have beendeveloped to discover genetic variants. Although variations across studies must be considered, there are not many currently-accessible packages that estimate between-study heterogeneity. Thus, we propose a python based application called Beta-Meta which can easilyprocess a meta-analysis by automatically selecting between a fixed effects and a randomeffects model based on heterogeneity. Beta-Meta implements flexible input data manipulation to allow multiple meta-analyses of different genotype-phenotype associations in asingle process. It provides a step-by-step meta-analysis of GWAS for each association inthe following order: heterogeneity test, two different calculations of an effect size and ap-value based on heterogeneity, and the Benjamini-Hochberg p-value adjustment. Thesemethods enable users to validate the results of individual studies with greater statisticalpower and better estimation precision. We elaborate on these and illustrate them with examples from several studies of infertility-related disorders.
已经开发了许多用于全基因组关联研究(GWAS)荟萃分析的软件包来发现基因变异。尽管必须考虑不同研究之间的差异,但目前可用于估计研究间异质性的软件包并不多。因此,我们提出了一个基于Python的应用程序Beta-Meta,它可以通过基于异质性自动在固定效应模型和随机效应模型之间进行选择,轻松地处理荟萃分析。Beta-Meta实现了灵活的输入数据操作,以便在单个过程中对不同的基因型-表型关联进行多次荟萃分析。它按以下顺序为每个关联提供GWAS的逐步荟萃分析:异质性检验、基于异质性的效应大小和p值的两种不同计算,以及Benjamini-Hochberg p值调整。这些方法使用户能够以更高的统计效力和更好的估计精度验证个体研究的结果。我们详细阐述这些内容,并用几项与不孕相关疾病的研究实例进行说明。