Suppr超能文献

Transmicron:准确预测插入概率可提高从转座子诱变筛选中检测癌症驱动基因的能力。

Transmicron: accurate prediction of insertion probabilities improves detection of cancer driver genes from transposon mutagenesis screens.

机构信息

TUM School of Computation, Information and Technology, Technical University of Munich, 81675 Munich, Germany.

Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany.

出版信息

Nucleic Acids Res. 2023 Feb 28;51(4):e21. doi: 10.1093/nar/gkac1215.

Abstract

Transposon screens are powerful in vivo assays used to identify loci driving carcinogenesis. These loci are identified as Common Insertion Sites (CISs), i.e. regions with more transposon insertions than expected by chance. However, the identification of CISs is affected by biases in the insertion behaviour of transposon systems. Here, we introduce Transmicron, a novel method that differs from previous methods by (i) modelling neutral insertion rates based on chromatin accessibility, transcriptional activity and sequence context and (ii) estimating oncogenic selection for each genomic region using Poisson regression to model insertion counts while controlling for neutral insertion rates. To assess the benefits of our approach, we generated a dataset applying two different transposon systems under comparable conditions. Benchmarking for enrichment of known cancer genes showed improved performance of Transmicron against state-of-the-art methods. Modelling neutral insertion rates allowed for better control of false positives and stronger agreement of the results between transposon systems. Moreover, using Poisson regression to consider intra-sample and inter-sample information proved beneficial in small and moderately-sized datasets. Transmicron is open-source and freely available. Overall, this study contributes to the understanding of transposon biology and introduces a novel approach to use this knowledge for discovering cancer driver genes.

摘要

转座子筛选是一种强大的体内分析方法,用于鉴定致癌相关基因座。这些基因座被鉴定为常见插入位点 (CIS),即插入转座子的区域比随机预期的更多。然而,CIS 的鉴定受到转座子系统插入行为的偏差影响。在这里,我们引入了 Transmicron,一种新的方法,与之前的方法不同,(i)基于染色质可及性、转录活性和序列上下文来模拟中性插入率,以及(ii)使用泊松回归估计每个基因组区域的致癌选择,在控制中性插入率的同时对插入计数进行建模。为了评估我们方法的优势,我们在可比条件下应用了两种不同的转座子系统生成数据集。对已知癌症基因的富集进行基准测试表明,Transmicron 对最先进方法的性能有所提高。模拟中性插入率有助于更好地控制假阳性,并在转座子系统之间更一致地得到结果。此外,使用泊松回归考虑样本内和样本间信息,对小数据集和中等数据集也有益。Transmicron 是开源的,免费提供。总的来说,本研究有助于理解转座子生物学,并引入了一种新方法,利用这种知识发现癌症驱动基因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58dc/9976929/6862643e93c7/gkac1215fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验