School of Materials Science and Engineering, Changzhou University, Changzhou213164, China.
Changzhou Key Laboratory of Functional Film Materials, Pan Asian Microvent Tech (Jiangsu) Corporation, Changzhou213164, China.
ACS Appl Mater Interfaces. 2023 Jan 25;15(3):4343-4357. doi: 10.1021/acsami.2c20626. Epub 2023 Jan 11.
The electrochemical performance is significantly influenced by the structure and surface morphology of the electrode materials used in supercapacitors. Using the floating catalytic chemical vapor deposition (FCCVD) technique, a self-supporting, flexible layer of continuously reinforced carbon nanotube woven film (CNWF) was developed. Then, polyaniline (PANI) was formed in the conductive network of CNWF using cyclic voltammetry electrochemical polymerization (CVEP) in various aqueous electrolytes to produce a series of flexible CNWF/PANI composite films. The impacts of the CVEP period, electrolyte type, and electrolyte concentration on the surface morphology, doping degree, and hydrophilicity of CNWF/PANI composite films were thoroughly examined. The CNWF/PANI-15C composite electrode, which was created using 15 cycles of CVEP in a solution of 1 M sodium bisulfate, displayed a distinctive coral-like PANI layer with a well-defined sharp nanoprotuberance structure, a 48% doping degree, and a quick reversible pseudocapacitive storage mechanism. At a current density of 1 A g, the energy density and specific capacitance reached 54.9 Wh kg and 1098.0 F g, respectively, with a specific capacitance retention rate of 75.9% maintained at 10 A g. Both the specific capacitance and coulomb efficiency were maintained at 96.9% and more than 98.1% of their initial values after being subjected to 2000 cycles of galvanostatic charge and discharge, demonstrating excellent electrochemical cycling stability. The CNWF/PANI-15C composite film, an ideal electrode material, offers a promising future in the field of flexible energy storage due to its exceptional mechanical properties (127.9 MPa tensile strength and 16.2% elongation at break).
超级电容器中电极材料的结构和表面形态对其电化学性能有显著影响。采用浮区催化化学气相沉积(FCCVD)技术,制备了一种自支撑、柔性的连续增强碳纳米管编织膜(CNWF)。然后,在不同的水溶液电解质中,通过循环伏安电化学聚合(CVEP)在 CNWF 的导电网络中形成聚苯胺(PANI),制备了一系列柔性的 CNWF/PANI 复合薄膜。详细研究了 CVEP 周期、电解质类型和电解质浓度对 CNWF/PANI 复合薄膜表面形态、掺杂程度和亲水性的影响。在 1 M 硫酸钠溶液中进行 15 个 CVEP 循环制备的 CNWF/PANI-15C 复合电极,具有独特的珊瑚状 PANI 层,具有明确的尖锐纳米突起结构、48%的掺杂度和快速可逆赝电容存储机制。在 1 A g 的电流密度下,能量密度和比电容分别达到 54.9 Wh kg 和 1098.0 F g,在 10 A g 时保持 75.9%的比电容保持率。经过 2000 次恒流充放电循环后,比电容和库仑效率分别保持在初始值的 96.9%和 98.1%以上,表现出优异的电化学循环稳定性。由于其出色的机械性能(127.9 MPa 的拉伸强度和 16.2%的断裂伸长率),CNWF/PANI-15C 复合薄膜作为一种理想的电极材料,在柔性储能领域具有广阔的应用前景。