Suppr超能文献

蜘蛛网 FBG 传感器网络的高精度解调方法。

High-precision demodulation method for the cobweb FBG sensor network.

出版信息

Appl Opt. 2023 Jan 10;62(2):419-428. doi: 10.1364/AO.478159.

Abstract

To improve the demodulation accuracy and speed of the cobweb fiber Bragg grating (FBG) sensor network, a demodulation algorithm based on a one-dimensional (1D) dilated convolutional neural network (CNN) combined with improved wavelet adaptive threshold de-noising is proposed. The improved wavelet adaptive threshold de-noising algorithm is used to de-noise several highly overlapping sensing signals for accurately measuring optical fiber sensing signals. Using a well-trained 1D dilated CNN model achieves extremely low signal demodulation errors, even with highly overlapping signals. Experiments show that the demodulation scheme improves the detection accuracy of the cobweb FBG sensor network and shortens detection time. Determination of the peak wavelengths of the four highly overlapping sensing signals achieves a root-mean-square error of better than 0.10 pm and an average demodulation time of 15.2 ms.

摘要

为了提高蛛网光纤布拉格光栅(FBG)传感器网络的解调精度和速度,提出了一种基于一维(1D)扩张卷积神经网络(CNN)并结合改进的小波自适应阈值去噪的解调算法。改进的小波自适应阈值去噪算法用于对几个高度重叠的传感信号进行去噪,以准确测量光纤传感信号。使用训练有素的 1D 扩张 CNN 模型可以实现极低的信号解调误差,即使是高度重叠的信号也是如此。实验表明,该解调方案提高了蛛网 FBG 传感器网络的检测精度,并缩短了检测时间。对四个高度重叠的传感信号的峰值波长进行测定,得到的均方根误差优于 0.10 pm,平均解调时间为 15.2 ms。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验