文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

2 型糖尿病牙种植体失败患者颌骨骨髓间充质干细胞中特定的 RNA m6A 修饰位点。

Specific RNA m6A modification sites in bone marrow mesenchymal stem cells from the jawbone marrow of type 2 diabetes patients with dental implant failure.

机构信息

Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.

Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China.

出版信息

Int J Oral Sci. 2023 Jan 12;15(1):6. doi: 10.1038/s41368-022-00202-3.


DOI:10.1038/s41368-022-00202-3
PMID:36631441
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9834262/
Abstract

The failure rate of dental implantation in patients with well-controlled type 2 diabetes mellitus (T2DM) is higher than that in non-diabetic patients. This due, in part, to the impaired function of bone marrow mesenchymal stem cells (BMSCs) from the jawbone marrow of T2DM patients (DM-BMSCs), limiting implant osseointegration. RNA N6-methyladenine (m6A) is important for BMSC function and diabetes regulation. However, it remains unclear how to best regulate m6A modifications in DM-BMSCs to enhance function. Based on the "m6A site methylation stoichiometry" of m6A single nucleotide arrays, we identified 834 differential m6A-methylated genes in DM-BMSCs compared with normal-BMSCs (N-BMSCs), including 43 and 790 m6A hypermethylated and hypomethylated genes, respectively, and 1 gene containing hyper- and hypomethylated m6A sites. Differential m6A hypermethylated sites were primarily distributed in the coding sequence, while hypomethylated sites were mainly in the 3'-untranslated region. The largest and smallest proportions of m6A-methylated genes were on chromosome 1 and 21, respectively. MazF-PCR and real-time RT-PCR results for the validation of erythrocyte membrane protein band 4.1 like 3, activity-dependent neuroprotector homeobox (ADNP), growth differentiation factor 11 (GDF11), and regulator of G protein signalling 2 agree with m6A single nucleotide array results; ADNP and GDF11 mRNA expression decreased in DM-BMSCs. Furthermore, gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses suggested that most of these genes were enriched in metabolic processes. This study reveals the differential m6A sites of DM-BMSCs compared with N-BMSCs and identifies candidate target genes to enhance BMSC function and improve implantation success in T2DM patients.

摘要

患有 2 型糖尿病(T2DM)的患者中,牙种植体的失败率高于非糖尿病患者。部分原因是 T2DM 患者颌骨骨髓间充质干细胞(BMSCs,DM-BMSCs)的功能受损,限制了种植体的骨整合。RNA N6-甲基腺苷(m6A)对 BMSC 功能和糖尿病调节很重要。然而,目前尚不清楚如何最好地调节 DM-BMSCs 中的 m6A 修饰以增强功能。基于 m6A 单核苷酸阵列的“m6A 位点甲基化化学计量”,我们发现与正常 BMSCs(N-BMSCs)相比,DM-BMSCs 中有 834 个差异 m6A 甲基化基因,分别有 43 个和 790 个 m6A 高甲基化和低甲基化基因,以及 1 个含有高甲基化和低甲基化 m6A 位点的基因。差异 m6A 高甲基化位点主要分布在编码序列中,而低甲基化位点主要位于 3'-非翻译区。m6A 甲基化基因的最大和最小比例分别位于 1 号和 21 号染色体上。红细胞膜蛋白带 4.1 样 3、活性依赖性神经保护同源框(ADNP)、生长分化因子 11(GDF11)和 G 蛋白信号调节因子 2 的 MazF-PCR 和实时 RT-PCR 结果验证与 m6A 单核苷酸阵列结果一致;ADNP 和 GDF11 的 mRNA 表达在 DM-BMSCs 中降低。此外,基因本体论和京都基因与基因组百科全书分析表明,这些基因大多富集在代谢过程中。本研究揭示了 DM-BMSCs 与 N-BMSCs 相比的差异 m6A 位点,并确定了候选靶基因,以增强 BMSC 功能,提高 T2DM 患者的种植体成功率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb16/9834262/9713b3725ced/41368_2022_202_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb16/9834262/7595d5013c1c/41368_2022_202_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb16/9834262/1457ffb16f7c/41368_2022_202_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb16/9834262/6f6e4914dad4/41368_2022_202_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb16/9834262/f22269a25975/41368_2022_202_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb16/9834262/6ba0ea3104d9/41368_2022_202_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb16/9834262/9713b3725ced/41368_2022_202_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb16/9834262/7595d5013c1c/41368_2022_202_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb16/9834262/1457ffb16f7c/41368_2022_202_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb16/9834262/6f6e4914dad4/41368_2022_202_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb16/9834262/f22269a25975/41368_2022_202_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb16/9834262/6ba0ea3104d9/41368_2022_202_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb16/9834262/9713b3725ced/41368_2022_202_Fig6_HTML.jpg

相似文献

[1]
Specific RNA m6A modification sites in bone marrow mesenchymal stem cells from the jawbone marrow of type 2 diabetes patients with dental implant failure.

Int J Oral Sci. 2023-1-12

[2]
Integrin α10 regulates adhesion, migration, and osteogenic differentiation of alveolar bone marrow mesenchymal stem cells in type 2 diabetic patients who underwent dental implant surgery.

Bioengineered. 2022-5

[3]
Effect of the Abnormal Expression of BMP-4 in the Blood of Diabetic Patients on the Osteogenic Differentiation Potential of Alveolar BMSCs and the Rescue Effect of Metformin: A Bioinformatics-Based Study.

Biomed Res Int. 2020

[4]
Effects of metformin on the osteogenesis of alveolar BMSCs from diabetic patients and implant osseointegration in rats.

Oral Dis. 2022-5

[5]
METTL14 benefits the mesenchymal stem cells in patients with steroid-associated osteonecrosis of the femoral head by regulating the m6A level of PTPN6.

Aging (Albany NY). 2021-12-15

[6]
Therapeutic effect of integrin-linked kinase gene-modified bone marrow-derived mesenchymal stem cells for streptozotocin-induced diabetic cystopathy in a rat model.

Stem Cell Res Ther. 2020-7-10

[7]
Tissue source determines the differentiation potentials of mesenchymal stem cells: a comparative study of human mesenchymal stem cells from bone marrow and adipose tissue.

Stem Cell Res Ther. 2017-12-6

[8]
The GDF11-FTO-PPARγ axis controls the shift of osteoporotic MSC fate to adipocyte and inhibits bone formation during osteoporosis.

Biochim Biophys Acta Mol Basis Dis. 2018-9-14

[9]
The m6A methylation profiles of immune cells in type 1 diabetes mellitus.

Front Immunol. 2022

[10]
miR-145 Regulates Diabetes-Bone Marrow Stromal Cell-Induced Neurorestorative Effects in Diabetes Stroke Rats.

Stem Cells Transl Med. 2016-12

引用本文的文献

[1]
BMSCs-targeting piezoelectric stimulation and immunomodulatory dual-functional hydrogel for promoting diabetic bone regeneration.

Mater Today Bio. 2025-6-25

[2]
Regulation of Skeletogenic Pathways by m6A RNA Modification: A Comprehensive Review.

Calcif Tissue Int. 2025-4-3

[3]
A blood glucose fluctuation-responsive delivery system promotes bone regeneration and the repair function of Smpd3-reprogrammed BMSC-derived exosomes.

Int J Oral Sci. 2024-12-1

[4]
Nr-CWS regulates METTL3-mediated mA modification of CDS2 mRNA in vascular endothelial cells and has prognostic significance.

Commun Biol. 2024-10-18

[5]
Interaction between immuno-stem dual lineages in jaw bone formation and injury repair.

Front Cell Dev Biol. 2024-3-6

本文引用的文献

[1]
Nsun4 and Mettl3 mediated translational reprogramming of Sox9 promotes BMSC chondrogenic differentiation.

Commun Biol. 2022-5-25

[2]
Biological networks in gestational diabetes mellitus: insights into the mechanism of crosstalk between long non-coding RNA and N-methyladenine modification.

BMC Pregnancy Childbirth. 2022-5-3

[3]
Recent Advances in the Treatment of Insulin Resistance Targeting Molecular and Metabolic Pathways: Fighting a Losing Battle?

Medicina (Kaunas). 2022-3-25

[4]
AMPK signaling in diabetes mellitus, insulin resistance and diabetic complications: A pre-clinical and clinical investigation.

Biomed Pharmacother. 2022-2

[5]
Activity-Dependent Neuroprotective Protein (ADNP)-Derived Peptide (NAP) Counteracts UV-B Radiation-Induced ROS Formation in Corneal Epithelium.

Antioxidants (Basel). 2022-1-7

[6]
The role of m6A RNA methylation in cancer metabolism.

Mol Cancer. 2022-1-12

[7]
m6A Methylation Regulates Osteoblastic Differentiation and Bone Remodeling.

Front Cell Dev Biol. 2021-12-21

[8]
ADSCs enhance VEGFR3-mediated lymphangiogenesis via METTL3-mediated VEGF-C mA modification to improve wound healing of diabetic foot ulcers.

Mol Med. 2021-11-13

[9]
The mA "reader" YTHDF1 promotes osteogenesis of bone marrow mesenchymal stem cells through translational control of ZNF839.

Cell Death Dis. 2021-11-12

[10]
Identification of MDM2, YTHDF2 and DDX21 as potential biomarkers and targets for treatment of type 2 diabetes.

Biochem Biophys Res Commun. 2021-12-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索