Kachale Ambar, Pavlíková Zuzana, Nenarokova Anna, Roithová Adriana, Durante Ignacio M, Miletínová Petra, Záhonová Kristína, Nenarokov Serafim, Votýpka Jan, Horáková Eva, Ross Robert L, Yurchenko Vyacheslav, Beznosková Petra, Paris Zdeněk, Valášek Leoš Shivaya, Lukeš Julius
Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.
Faculty of Sciences, University of South Bohemia, České Budějovice, Czech Republic.
Nature. 2023 Jan;613(7945):751-758. doi: 10.1038/s41586-022-05584-2. Epub 2023 Jan 11.
Cognate tRNAs deliver specific amino acids to translating ribosomes according to the standard genetic code, and three codons with no cognate tRNAs serve as stop codons. Some protists have reassigned all stop codons as sense codons, neglecting this fundamental principle. Here we analyse the in-frame stop codons in 7,259 predicted protein-coding genes of a previously undescribed trypanosomatid, Blastocrithidia nonstop. We reveal that in this species in-frame stop codons are underrepresented in genes expressed at high levels and that UAA serves as the only termination codon. Whereas new tRNAs fully cognate to UAG and UAA evolved to reassign these stop codons, the UGA reassignment followed a different path through shortening the anticodon stem of tRNA from five to four base pairs (bp). The canonical 5-bp tRNA recognizes UGG as dictated by the genetic code, whereas its shortened 4-bp variant incorporates tryptophan also into in-frame UGA. Mimicking this evolutionary twist by engineering both variants from B. nonstop, Trypanosoma brucei and Saccharomyces cerevisiae and expressing them in the last two species, we recorded a significantly higher readthrough for all 4-bp variants. Furthermore, a gene encoding B. nonstop release factor 1 acquired a mutation that specifically restricts UGA recognition, robustly potentiating the UGA reassignment. Virtually the same strategy has been adopted by the ciliate Condylostoma magnum. Hence, we describe a previously unknown, universal mechanism that has been exploited in unrelated eukaryotes with reassigned stop codons.
同源tRNA根据标准遗传密码将特定氨基酸传递到正在进行翻译的核糖体上,三个没有同源tRNA的密码子用作终止密码子。一些原生生物将所有终止密码子重新分配为有义密码子,而忽略了这一基本原则。在这里,我们分析了一种此前未被描述的锥虫——无终止芽生短膜虫7259个预测蛋白质编码基因中的框内终止密码子。我们发现,在这个物种中,高水平表达的基因中框内终止密码子的数量不足,并且UAA是唯一的终止密码子。虽然与UAG和UAA完全同源的新tRNA进化出来以重新分配这些终止密码子,但UGA的重新分配则是通过将tRNA的反密码子茎从五个碱基对(bp)缩短到四个碱基对来实现的。规范的5-bp tRNA按照遗传密码识别UGG,而其缩短的4-bp变体也将色氨酸掺入框内UGA中。通过对无终止芽生短膜虫、布氏锥虫和酿酒酵母的这两种变体进行工程改造并在最后两个物种中表达,模仿这种进化变化,我们记录到所有4-bp变体的通读率显著更高。此外,一个编码无终止芽生短膜虫释放因子1的基因发生了一个突变,该突变特异性地限制了对UGA的识别,有力地增强了UGA的重新分配。纤毛虫大殖口虫实际上也采用了几乎相同的策略。因此,我们描述了一种以前未知的通用机制,这种机制在具有重新分配终止密码子的不相关真核生物中得到了利用。