Budzak James, Siegel T Nicolai
Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, 82512, Germany.
Biomedical Center, Division of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, 82512, Germany.
Nucleic Acids Res. 2025 Jun 6;53(11). doi: 10.1093/nar/gkaf515.
The genomes of all organisms encode diverse functional elements, including thousands of genes and essential noncoding regions for gene regulation and genome organization. Systematic perturbation of these elements is crucial to understanding their roles and how their disruption impacts cellular function. Genetic perturbation approaches, which disrupt gene expression or function, provide valuable insights by linking genetic changes to observable phenotypes. However, perturbing individual genomic elements one at a time is impractical. Genetic screens overcome this limitation by enabling the simultaneous perturbation of numerous genomic elements within a single experiment. Traditionally, these screens relied on simple, high-throughput readouts such as cell fitness, differentiation, or one-dimensional fluorescence. However, recent advancements have introduced powerful technologies that combine genetic screens with image-based and single-cell sequencing readouts, allowing researchers to study how perturbations affect complex cellular phenotypes on a genome-wide scale. These innovations, alongside the development of CRISPR-Cas technologies, have significantly enhanced the precision, efficiency, and scalability of genetic screening approaches. In this review, we discuss the genetic screens performed in kinetoplastid parasites to date, emphasizing their application to both coding and noncoding regions of the genome. Furthermore, we explore how integrating image-based and single-cell sequencing technologies with genetic screens holds the potential to deliver unprecedented insights into cellular function and regulatory mechanisms.
所有生物体的基因组都编码了多种功能元件,包括数千个基因以及用于基因调控和基因组组织的重要非编码区域。对这些元件进行系统性干扰对于理解它们的作用以及其破坏如何影响细胞功能至关重要。破坏基因表达或功能的遗传干扰方法通过将基因变化与可观察到的表型联系起来,提供了有价值的见解。然而,一次只干扰单个基因组元件是不切实际的。遗传筛选通过在单个实验中同时干扰众多基因组元件克服了这一限制。传统上,这些筛选依赖于简单的高通量读数,如细胞适应性、分化或一维荧光。然而,最近的进展引入了强大的技术,将遗传筛选与基于图像和单细胞测序读数相结合,使研究人员能够在全基因组范围内研究干扰如何影响复杂的细胞表型。这些创新,连同CRISPR-Cas技术的发展,显著提高了遗传筛选方法的精度、效率和可扩展性。在这篇综述中,我们讨论了迄今为止在动基体寄生虫中进行的遗传筛选,强调了它们在基因组编码和非编码区域的应用。此外,我们探讨了将基于图像和单细胞测序技术与遗传筛选相结合如何有可能为细胞功能和调控机制提供前所未有的见解。
Nucleic Acids Res. 2025-6-6
Arch Ital Urol Androl. 2025-6-30
Open Res Eur. 2025-5-6
Cochrane Database Syst Rev. 2022-10-4
Cochrane Database Syst Rev. 2021-4-19
Health Soc Care Deliv Res. 2025-5-21
Cochrane Database Syst Rev. 2017-12-22
Cochrane Database Syst Rev. 2020-1-9
Cochrane Database Syst Rev. 2012-12-12
J Cell Biol. 2025-2-3