Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, P.R. China.
Department of Stomatology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, P. R. China.
Theranostics. 2023 Jan 1;13(2):673-684. doi: 10.7150/thno.77417. eCollection 2023.
Synthetic hydrogels are commonly mechanically weak which limits the scope of their applications. In this study, we synthesized an organic-inorganic hybrid hydrogel with ultrahigh strength, stiffness, and toughness via enzyme-induced mineralization of calcium phosphate in a double network of bacterial cellulose nanofibers and alginate-Ca. Cellulose nanofibers formed the first rigid network via hydrogen binding and templated the deposition of calcium phosphate, while alginate-Ca formed the second energy-dissipating network via ionic interaction. The two networks created a brick-mortar-like structure, in which the "tortuous fracture path" mechanism by breaking the interlaced calcium phosphate-coated bacterial cellulose nanofibers and the hysteresis by unzipping the ionic alginate-Ca network made a great contribution to the mechanical properties of the hydrogels. The optimized hydrogel exhibited ultrahigh fracture stress of 48 MPa, Young's modulus of 1329 MPa, and fracture energy of 3013 J/m, which are barely possessed by the reported synthetic hydrogels. Finally, the hydrogel represented potential use in subchondral bone defect repair in an model.
合成水凝胶通常机械强度较弱,这限制了它们的应用范围。在这项研究中,我们通过在细菌纤维素纳米纤维和藻酸盐-Ca 的双网络中酶诱导磷酸钙的矿化,合成了一种具有超高强度、刚度和韧性的有机-无机杂化水凝胶。纤维素纳米纤维通过氢键形成第一个刚性网络,并模板化磷酸钙的沉积,而藻酸盐-Ca 通过离子相互作用形成第二个能量耗散网络。这两个网络形成了一种类似砖-砂浆的结构,其中通过打断交错的磷酸钙涂层细菌纤维素纳米纤维的“曲折断裂路径”机制以及通过解开离子藻酸盐-Ca 网络的滞后作用,对水凝胶的力学性能做出了巨大贡献。优化后的水凝胶表现出超高的断裂应力 48MPa、杨氏模量 1329MPa 和断裂能 3013J/m,这几乎是报道的合成水凝胶所不具备的。最后,该水凝胶在软骨下骨缺损修复模型中表现出了潜在的应用。