A3BMS Lab-Active, Adaptive and Autonomous Bioinspired Materials, Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Straße 31, 79104 Freiburg, Germany.
Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg, Germany.
Biomacromolecules. 2020 Jun 8;21(6):2176-2186. doi: 10.1021/acs.biomac.0c00160. Epub 2020 Apr 22.
Many biological high-performance composites, such as bone, antler, and crustacean cuticles, are composed of densely mineralized and ordered nanofiber materials. The mimicry of even simplistic bioinspired structures, i.e., of densely and homogeneously mineralized nanofibrillar materials with controllable mechanical performance, continues to be a grand challenge. Here, using alkaline phosphatase as an enzymatic catalyst, we demonstrate the dense, homogeneous, and spatially controlled mineralization of calcium phosphate nanostructures within networks of anionically charged cellulose nanofibrils (CNFs) and cationically charged chitin nanofibrils (ChNFs)-both emerging biobased nanoscale building blocks for sustainable high-performance materials design. Our study reveals that anionic CNFs lead to a more homogeneous nanoscale mineralization with very high mineral contents up to ca. 70 wt % with a transition from amorphous to crystalline deposits, while cationic ChNFs yield rod-like crystalline morphologies. The bone-inspired CNF bulk films exhibit a significantly increased stiffness, maintain good flexibility and translucency, and have a significant gain in wet state mechanical properties. The mechanical properties can be tuned both by the enzyme concentration and the mineralization time. Moreover, we also show a spatial control of the mineralization using kinetically controlled substrate uptake in a dialysis reactor, and by spatially selectively incorporating the enzyme into 2D printed filament patterns. The strategy highlights possibilities for spatial encoding of enzymes in tailored structures and patterns and programmed mineralization processes, promoting the potential application of mineralized CNF biomaterials with complex gradients for bone substitutes and tissue regeneration in general.
许多生物高性能复合材料,如骨骼、鹿角和甲壳类动物的外骨骼,都是由密集矿化和有序纳米纤维材料组成的。即使是简单的仿生结构,即具有可控机械性能的密集和均匀矿化纳米纤维材料的仿生,也仍然是一个巨大的挑战。在这里,我们使用碱性磷酸酶作为酶催化剂,在带负电荷的纤维素纳米纤维(CNF)和带正电荷的壳聚糖纳米纤维(ChNF)网络内展示了磷酸钙纳米结构的密集、均匀和空间控制的矿化,这两种物质都是新兴的生物基纳米级构建块,用于可持续的高性能材料设计。我们的研究表明,带负电荷的 CNF 导致更均匀的纳米级矿化,具有非常高的矿化含量,最高可达约 70wt%,从无定形到结晶沉积物的转变,而带正电荷的 ChNF 则产生棒状结晶形态。受骨骼启发的 CNF 块状薄膜表现出显著提高的刚度,保持良好的柔韧性和透明度,并在湿态机械性能方面有显著提高。机械性能可以通过酶浓度和矿化时间来调节。此外,我们还通过在透析反应器中使用动力学控制的底物摄取以及通过空间选择性地将酶纳入二维打印细丝图案来实现矿化的空间控制。该策略突出了在定制结构和图案中对酶进行空间编码和程序化矿化过程的可能性,为具有复杂梯度的矿化 CNF 生物材料在骨骼替代物和组织再生中的潜在应用提供了支持。