Suppr超能文献

支持乳腺癌决策的922个预测模型中的大多数存在高偏倚风险。

The majority of 922 prediction models supporting breast cancer decision-making are at high risk of bias.

作者信息

Hueting Tom A, van Maaren Marissa C, Hendriks Mathijs P, Koffijberg Hendrik, Siesling Sabine

机构信息

Department of Health Technology & Services Research, Technical Medical Centre, University of Twente, Enschede, The Netherlands.

Department of Health Technology & Services Research, Technical Medical Centre, University of Twente, Enschede, The Netherlands; Department of Research and Development, Netherlands Comprehensive Cancer Organisation (IKNL), Utrecht, The Netherlands.

出版信息

J Clin Epidemiol. 2022 Dec;152:238-247. doi: 10.1016/j.jclinepi.2022.10.016. Epub 2022 Oct 27.

Abstract

OBJECTIVES

To systematically review the currently available prediction models that may support treatment decision-making in breast cancer.

STUDY DESIGN AND SETTING

Literature was systematically searched to identify studies reporting on development of prediction models aiming to support breast cancer treatment decision-making, published between January 2010 and December 2020. Quality and risk of bias were assessed using the Prediction model Risk Of Bias (ROB) Assessment Tool (PROBAST).

RESULTS

After screening 20,460 studies, 534 studies were included, reporting on 922 models. The 922 models predicted: mortality (n = 417 45%), recurrence (n = 217, 24%), lymph node involvement (n = 141, 15%), adverse events (n = 58, 6%), treatment response (n = 56, 6%), or other outcomes (n = 33, 4%). In total, 285 models (31%) lacked a complete description of the final model and could not be applied to new patients. Most models (n = 878, 95%) were considered to contain high ROB.

CONCLUSION

A substantial overlap in predictor variables and outcomes between the models was observed. Most models were not reported according to established reporting guidelines or showed methodological flaws during the development and/or validation of the model. Further development of prediction models with thorough quality and validity assessment is an essential first step for future clinical application.

摘要

目的

系统评价目前可用于支持乳腺癌治疗决策的预测模型。

研究设计与背景

系统检索文献,以确定2010年1月至2020年12月期间发表的关于旨在支持乳腺癌治疗决策的预测模型开发的研究。使用预测模型偏倚风险(ROB)评估工具(PROBAST)评估质量和偏倚风险。

结果

在筛选20460项研究后,纳入了534项研究,报告了922个模型。这922个模型预测的结果包括:死亡率(n = 417,45%)、复发(n = 217,24%)、淋巴结受累(n = 141,15%)、不良事件(n = 58,6%)、治疗反应(n = 56,6%)或其他结果(n = 33,4%)。总共有285个模型(31%)缺乏对最终模型的完整描述,无法应用于新患者。大多数模型(n = 878,95%)被认为存在高偏倚风险。

结论

观察到模型之间预测变量和结果存在大量重叠。大多数模型未按照既定的报告指南进行报告,或者在模型开发和/或验证过程中存在方法学缺陷。对预测模型进行深入的质量和有效性评估,并进一步开发,是未来临床应用的关键第一步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验