Suppr超能文献

基于常规血液检测的 STAR 列线图模型在乳腺癌的成本效益预后评估中的应用。

Cost-effective prognostic evaluation of breast cancer: using a STAR nomogram model based on routine blood tests.

机构信息

Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China.

Department of Breast, Guangxi Zhuang Autonomous Region Maternal and Child Health Care Hospital, Nanning, China.

出版信息

Front Endocrinol (Lausanne). 2024 Mar 11;15:1324617. doi: 10.3389/fendo.2024.1324617. eCollection 2024.

Abstract

BACKGROUND

Breast cancer (BC) is the most common and prominent deadly disease among women. Predicting BC survival mainly relies on TNM staging, molecular profiling and imaging, hampered by subjectivity and expenses. This study aimed to establish an economical and reliable model using the most common preoperative routine blood tests (RT) data for survival and surveillance strategy management.

METHODS

We examined 2863 BC patients, dividing them into training and validation cohorts (7:3). We collected demographic features, pathomics characteristics and preoperative 24-item RT data. BC risk factors were identified through Cox regression, and a predictive nomogram was established. Its performance was assessed using C-index, area under curves (AUC), calibration curve and decision curve analysis. Kaplan-Meier curves stratified patients into different risk groups. We further compared the STAR model (utilizing HE and RT methodologies) with alternative nomograms grounded in molecular profiling (employing second-generation short-read sequencing methodologies) and imaging (utilizing PET-CT methodologies).

RESULTS

The STAR nomogram, incorporating subtype, TNM stage, age and preoperative RT data (LYM, LYM%, EOSO%, RDW-SD, P-LCR), achieved a C-index of 0.828 in the training cohort and impressive AUCs (0.847, 0.823 and 0.780) for 3-, 5- and 7-year OS rates, outperforming other nomograms. The validation cohort showed similar impressive results. The nomogram calculates a patient's total score by assigning values to each risk factor, higher scores indicating a poor prognosis. STAR promises potential cost savings by enabling less intensive surveillance in around 90% of BC patients. Compared to nomograms based on molecular profiling and imaging, STAR presents a more cost-effective, with potential savings of approximately $700-800 per breast cancer patient.

CONCLUSION

Combining appropriate RT parameters, STAR nomogram could help in the detection of patient anemia, coagulation function, inflammation and immune status. Practical implementation of the STAR nomogram in a clinical setting is feasible, and its potential clinical impact lies in its ability to provide an early, economical and reliable tool for survival prediction and surveillance strategy management. However, our model still has limitations and requires external data validation. In subsequent studies, we plan to mitigate the potential impact on model robustness by further updating and adjusting the data and model.

摘要

背景

乳腺癌(BC)是女性中最常见和最显著的致命疾病。BC 的生存预测主要依赖于 TNM 分期、分子谱分析和影像学,但这些方法存在主观性和费用高的问题。本研究旨在利用最常见的术前常规血液检查(RT)数据建立一种经济可靠的模型,用于生存和监测策略管理。

方法

我们检查了 2863 名 BC 患者,将其分为训练和验证队列(7:3)。我们收集了人口统计学特征、病理特征和术前 24 项 RT 数据。通过 Cox 回归识别 BC 的危险因素,并建立预测列线图。使用 C 指数、曲线下面积(AUC)、校准曲线和决策曲线分析评估其性能。Kaplan-Meier 曲线将患者分层为不同风险组。我们还比较了 STAR 模型(利用 HE 和 RT 方法)与基于分子谱分析的替代列线图(利用第二代短读测序方法)和基于影像学的替代列线图(利用 PET-CT 方法)。

结果

STAR 列线图,纳入亚型、TNM 分期、年龄和术前 RT 数据(LYM、LYM%、EOSO%、RDW-SD、P-LCR),在训练队列中的 C 指数为 0.828,对于 3 年、5 年和 7 年的 OS 率,AUC 分别为 0.847、0.823 和 0.780,表现优于其他列线图。验证队列也显示出类似的显著结果。该列线图通过为每个危险因素赋值来计算患者的总分,得分越高表明预后越差。STAR 通过在大约 90%的 BC 患者中实施较少的密集监测,有望节省成本。与基于分子谱分析和影像学的列线图相比,STAR 具有更高的成本效益,每位乳腺癌患者可节省约 700-800 美元。

结论

结合适当的 RT 参数,STAR 列线图可帮助检测患者贫血、凝血功能、炎症和免疫状态。在临床实践中实际实施 STAR 列线图是可行的,其潜在的临床影响在于为生存预测和监测策略管理提供了一种早期、经济可靠的工具。然而,我们的模型仍存在局限性,需要外部数据验证。在后续研究中,我们计划通过进一步更新和调整数据和模型来减轻对模型稳健性的潜在影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f82/10961337/1770e1098ba4/fendo-15-1324617-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验