Suppr超能文献

针对先进碱性锌镍电池锌基阳极问题的有效解决方案。

Effective Solution toward the Issues of Zn-Based Anodes for Advanced Alkaline Ni-Zn Batteries.

机构信息

School of Environment and Energy, South China University of Technology, Guangzhou510006, China.

College of Automation, Zhongkai University of Agriculture and Engineering, Guangzhou510225, China.

出版信息

ACS Appl Mater Interfaces. 2023 Jan 25;15(3):3953-3960. doi: 10.1021/acsami.2c18460. Epub 2023 Jan 12.

Abstract

Alkaline nickel-zinc (Ni-Zn) batteries, as traditional rechargeable aqueous batteries, possess an obvious advantage in terms of energy density, but their development has been hindered by the anode-concerned problems, Zn dendrites, self-corrosion, passivation, deformation, and hydrogen evolution reaction (HER). Herein, to solve these problems, a dual protective strategy is proposed toward the anode using ZnO as an initial active material, including a C coating on ZnO (ZnO@C) and a thin poly(vinyl alcohol) (PVA) layer coating on the electrode (ZnO@C-PVA). In a three-electrode configuration, the reversible capacity can reach 600 mAh g for the ZnO@C-PVA. Using excessive commercial Ni(OH) as the cathode, the alkaline Ni-Zn cells exhibit good electrochemical performance: Discharge capacity can be as high as 640-650 mAh g at 4 A g with a Coulomb efficiency (CE) as high as 97-99% after activity, suggesting low self-corrosion and HER. Capacity retention is 97% after 1200 cycles, indicating rather good durability. The discharge capacity is even slightly increased with the increase of charge/discharge current density (≤8 A g), implying good rate performance. Additionally, the discharge voltage can reach 1.8 V (midpoint value) at various current densities, reflecting the fast reaction kinetics of the anode. Most importantly, no Zn dendrites and passivation are observed after long-term cycling. The strategy proposed here can solve the anode-concerned problems effectively, exhibiting a high application prospect.

摘要

堿性镍锌(Ni-Zn)电池作为传统的可充电水系电池,在能量密度方面具有明显优势,但由于阳极相关问题、锌枝晶、自腐蚀、钝化、变形和析氢反应(HER)的存在,其发展受到了阻碍。在此,为了解决这些问题,提出了一种针对阳极的双保护策略,使用氧化锌作为初始活性材料,包括在氧化锌(ZnO)上涂覆碳(ZnO@C)和在电极上涂覆一层薄的聚乙烯醇(PVA)层(ZnO@C-PVA)。在三电极配置中,ZnO@C-PVA 的可逆容量可达 600 mAh g。使用过量的商业 Ni(OH)作为阴极,堿性 Ni-Zn 电池表现出良好的电化学性能:在 4 A g 的电流密度下,放电容量高达 640-650 mAh g,活性后库仑效率(CE)高达 97-99%,表明自腐蚀和 HER 较低。经过 1200 次循环后,容量保持率为 97%,表明具有较好的耐久性。随着充放电电流密度的增加(≤8 A g),放电容量甚至略有增加,表明具有良好的倍率性能。此外,在各种电流密度下,放电电压可达到 1.8 V(中点值),反映出阳极的快速反应动力学。重要的是,长期循环后没有观察到锌枝晶和钝化。这里提出的策略可以有效地解决阳极相关的问题,具有很高的应用前景。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验