Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, China.
Hereditas. 2023 Jan 13;160(1):1. doi: 10.1186/s41065-023-00262-3.
The response of advanced clear cell renal cell carcinoma (ccRCC) to immunotherapy is still not durable, suggesting that the immune landscape of ccRCC still needs to be refined, especially as some molecules that have synergistic effects with immune checkpoint genes need to be explored.
The expression levels of CENPM and its relationship with clinicopathological features were explored using the ccRCC dataset from TCGA and GEO databases. Quantitative polymerase chain reaction (qPCR) analysis was performed to validate the expression of CENPM in renal cancer cell lines. Kaplan-Meier analysis, COX regression analysis and Nomogram construction were used to systematically evaluate the prognostic potential of CENPM in ccRCC. Besides, single gene correlation analysis, protein-protein interaction (PPI) network, genetic ontology (GO), kyoto encyclopedia of genes and genomes (KEGG) and gene set enrichment analysis (GSEA) were used to predict the biological behaviour of CENPM and the possible signalling pathways involved. Finally, a comprehensive analysis of the crosstalk between CENPM and immune features in the tumor microenvironment was performed based on the ssGSEA algorithm, the tumor immune dysfunction and exclusion (TIDE) algorithm, the TIMER2.0 database and the TISIDB database.
CENPM was significantly upregulated in ccRCC tissues and renal cancer cell lines and was closely associated with poor clinicopathological features and prognosis. Pathway enrichment analysis revealed that CENPM may be involved in the regulation of the cell cycle in ccRCC and may have some crosstalk with the immune microenvironment in tumors. The ssGSEA algorithm, CIBERSOPT algorithm suggests that CENPM is associated with suppressor immune cells in ccRCC such as regulatory T cells. The ssGSEA algorithm, CIBERSOPT algorithm suggests that CENPM is associated with suppressor immune cells in ccRCC such as regulatory T cells. Furthermore, the TISIDB database provides evidence that not only CENPM is positively associated with immune checkpoint genes such as CTLA4, PDCD1, LAG3, TIGIT, but also chemokines and receptors (such as CCL5, CXCL13, CXCR3, CXCR5) may be responsible for the malignant phenotype of CENPM in ccRCC. Meanwhile, predictions based on the TIDE algorithm support that patients with high CENPM expression have a worse response to immunotherapy.
The upregulation of CENPM in ccRCC predicts a poor clinical outcome, and this malignant phenotype may be associated with its exacerbation of the immunosuppressive state in the tumor microenvironment.
晚期透明细胞肾细胞癌(ccRCC)对免疫治疗的反应仍然不能持久,这表明 ccRCC 的免疫景观仍需要进一步细化,特别是需要探索一些与免疫检查点基因具有协同作用的分子。
利用 TCGA 和 GEO 数据库中的 ccRCC 数据集,探讨 CENPM 的表达水平及其与临床病理特征的关系。采用定量聚合酶链反应(qPCR)分析验证 CENPM 在肾癌细胞系中的表达。采用 Kaplan-Meier 分析、COX 回归分析和 Nomogram 构建系统评估 CENPM 在 ccRCC 中的预后潜力。此外,还进行了单基因相关性分析、蛋白质-蛋白质相互作用(PPI)网络、遗传本体论(GO)、京都基因与基因组百科全书(KEGG)和基因集富集分析(GSEA),以预测 CENPM 的生物学行为及其可能涉及的信号通路。最后,基于 ssGSEA 算法、肿瘤免疫功能障碍和排斥(TIDE)算法、TIMER2.0 数据库和 TISIDB 数据库,对 CENPM 与肿瘤微环境中免疫特征的相互作用进行了综合分析。
CENPM 在 ccRCC 组织和肾癌细胞系中明显上调,与不良的临床病理特征和预后密切相关。通路富集分析表明,CENPM 可能参与 ccRCC 中细胞周期的调控,并且可能与肿瘤免疫微环境有一定的相互作用。ssGSEA 算法、CIBERSOPT 算法表明,CENPM 与 ccRCC 中的抑制性免疫细胞(如调节性 T 细胞)有关。此外,TISIDB 数据库提供的证据表明,CENPM 不仅与免疫检查点基因(如 CTLA4、PDCD1、LAG3、TIGIT)呈正相关,而且趋化因子和受体(如 CCL5、CXCL13、CXCR3、CXCR5)也可能是导致 CENPM 在 ccRCC 中恶性表型的原因。同时,基于 TIDE 算法的预测支持高 CENPM 表达的患者对免疫治疗的反应较差。
CENPM 在 ccRCC 中的上调预示着不良的临床结局,这种恶性表型可能与其在肿瘤微环境中加剧免疫抑制状态有关。