Suppr超能文献

提高心电图分类模型的泛化性能。

Improving generalization performance of electrocardiogram classification models.

作者信息

Han Hyeongrok, Park Seongjae, Min Seonwoo, Kim Eunji, Kim HyunGi, Park Sangha, Kim Jin-Kook, Park Junsang, An Junho, Lee Kwanglo, Jeong Wonsun, Chon Sangil, Ha Kwon-Woo, Han Myungkyu, Choi Hyun-Soo, Yoon Sungroh

机构信息

Department of Electrical and Computer engineering, Seoul National University, Seoul, Republic of Korea.

HUINNO Co., Ltd, Seoul, Republic of Korea.

出版信息

Physiol Meas. 2023 May 10;44(5). doi: 10.1088/1361-6579/acb30f.

Abstract

Recently, many electrocardiogram (ECG) classification algorithms using deep learning have been proposed. Because the ECG characteristics vary across datasets owing to variations in factors such as recorded hospitals and the race of participants, the model needs to have a consistently high generalization performance across datasets. In this study, as part of the PhysioNet/Computing in Cardiology Challenge (PhysioNet Challenge) 2021, we present a model to classify cardiac abnormalities from the 12- and the reduced-lead ECGs.To improve the generalization performance of our earlier proposed model, we adopted a practical suite of techniques, i.e. constant-weighted cross-entropy loss, additional features, mixup augmentation, squeeze/excitation block, and OneCycle learning rate scheduler. We evaluated its generalization performance using the leave-one-dataset-out cross-validation setting. Furthermore, we demonstrate that the knowledge distillation from the 12-lead and large-teacher models improved the performance of the reduced-lead and small-student models.With the proposed model, our DSAIL SNU team has received Challenge scores of 0.55, 0.58, 0.58, 0.57, and 0.57 (ranked 2nd, 1st, 1st, 2nd, and 2nd of 39 teams) for the 12-, 6-, 4-, 3-, and 2-lead versions of the hidden test set, respectively.The proposed model achieved a higher generalization performance over six different hidden test datasets than the one we submitted to the PhysioNet Challenge 2020.

摘要

最近,已经提出了许多使用深度学习的心电图(ECG)分类算法。由于心电图特征会因记录医院和参与者种族等因素的不同而在不同数据集之间有所差异,因此模型需要在各个数据集上都具有始终如一的高泛化性能。在本研究中,作为2021年生理网/心脏病学计算挑战赛(PhysioNet挑战赛)的一部分,我们提出了一种用于从12导联和简化导联心电图中分类心脏异常的模型。为了提高我们早期提出的模型的泛化性能,我们采用了一套实用的技术,即常数加权交叉熵损失、附加特征、混合增强、挤压/激励块和单周期学习率调度器。我们使用留一数据集交叉验证设置评估了其泛化性能。此外,我们证明了从12导联和大型教师模型进行知识蒸馏提高了简化导联和小型学生模型的性能。通过所提出的模型,我们的DSAIL SNU团队在隐藏测试集的12导联、6导联、4导联、3导联和2导联版本中分别获得了0.55、0.58、0.58、0.57和0.57的挑战分数(在39个团队中排名第2、第1、第1、第2和第2)。与我们提交给2020年生理网挑战赛的模型相比,所提出的模型在六个不同的隐藏测试数据集上实现了更高的泛化性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验