Yang Yunxiao, Du Zhiyong, Fang Meng, Ma Ying, Liu Yuhua, Wang Tianguang, Han Zhongyi, Peng Zhan, Pan Yilin, Qin Haokai, Qin Yanwen, Jiang Yong, Tu Pengfei, Guo Xiaoyu, Lu Yingyuan, Yang Xiubin, Hua Kun
Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.
Transl Res. 2023 Jun;256:30-40. doi: 10.1016/j.trsl.2023.01.001. Epub 2023 Jan 11.
Postoperative atrial fibrillation (POAF) is a common complication of coronary artery bypass grafting (CABG) procedures. However, the molecular mechanism of POAF remains poorly understood, hence the absence of effective prevention strategies. Here we used targeted metabolomics on pericardial fluid and serum samples from CABG patients to investigate POAF-associated metabolic alterations and related risk prediction of new-onset AF. Nine differential metabolites in various metabolic pathways were found in both pericardial fluid and serum samples from patients with POAF and without POAF. By using machine learning algorithms and regression models, a 4-metabolite (aceglutamide, ornithine, methionine, and arginine) risk prediction model was constructed and showed accurate performance in predicting POAF in both discovery and validation sets. This work extends the metabolic insights of the cardiac microenvironment and blood in patients with POAF and paves the way for the use of targeted metabolomics for predicting POAF in patients with CABG surgery.
术后心房颤动(POAF)是冠状动脉旁路移植术(CABG)常见的并发症。然而,POAF的分子机制仍知之甚少,因此缺乏有效的预防策略。在此,我们对CABG患者的心包液和血清样本进行靶向代谢组学研究,以探讨与POAF相关的代谢改变及新发房颤的相关风险预测。在有POAF和无POAF患者的心包液和血清样本中均发现了9种不同代谢途径中的差异代谢物。通过使用机器学习算法和回归模型,构建了一个包含4种代谢物(乙酰谷酰胺、鸟氨酸、蛋氨酸和精氨酸)的风险预测模型,该模型在发现集和验证集中预测POAF时均表现出准确的性能。这项工作拓展了对POAF患者心脏微环境和血液的代谢认识,并为在CABG手术患者中使用靶向代谢组学预测POAF铺平了道路。