Department of Plant Science, McGill University, Quebec, Canada; Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, Quebec, Canada.
Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, Quebec, Canada.
J Biol Chem. 2023 Mar;299(3):102898. doi: 10.1016/j.jbc.2023.102898. Epub 2023 Jan 10.
Jasmonates are oxylipin phytohormones critical for plant resistance against necrotrophic pathogens and chewing herbivores. An early step in their biosynthesis is catalyzed by non-heme iron lipoxygenases (LOX; EC 1.13.11.12). In Arabidopsis thaliana, phosphorylation of Ser of AtLOX2 was previously reported, but whether phosphorylation regulates AtLOX2 activity is unclear. Here, we characterize the kinetic properties of recombinant WT AtLOX2 (AtLOX2). AtLOX2 displays positive cooperativity with α-linolenic acid (α-LeA, jasmonate precursor), linoleic acid (LA), and arachidonic acid (AA) as substrates. Enzyme velocity with endogenous substrates α-LeA and LA increased with pH. For α-LeA, this increase was accompanied by a decrease in substrate affinity at alkaline pH; thus, the catalytic efficiency for α-LeA was not affected over the pH range tested. Analysis of Ser phosphovariants demonstrated that pseudophosphorylation inhibits enzyme activity. AtLOX2 activity was not detected in phosphomimics Atlox2 and Atlox2 when α-LeA or AA were used as substrates. In contrast, phosphonull mutant Atlox2 exhibited strong activity with all three substrates, α-LeA, LA, and AA. Structural comparison between the AtLOX2 AlphaFold model and a complex between 8R-LOX and a 20C polyunsaturated fatty acid suggests a close proximity between AtLOX2 Ser and the carboxylic acid head group of the polyunsaturated fatty acid. This analysis indicates that Ser is located at a critical position within the AtLOX2 structure and highlights how Ser phosphorylation could affect AtLOX2 catalytic activity. Overall, we propose that AtLOX2 Ser phosphorylation represents a key mechanism for the regulation of AtLOX2 activity and, thus, the jasmonate biosynthesis pathway and plant resistance.
茉莉酸是植物对坏死性病原体和咀嚼性食草动物抗性所必需的氧化脂肪素植物激素。它们生物合成的早期步骤是由非血红素铁脂氧合酶(LOX;EC 1.13.11.12)催化的。在拟南芥中,以前曾报道过 Ser 的 AtLOX2 磷酸化,但磷酸化是否调节 AtLOX2 活性尚不清楚。在这里,我们对重组 WT AtLOX2(AtLOX2)的动力学特性进行了表征。AtLOX2 对 α-亚麻酸(α-LeA,茉莉酸前体)、亚油酸(LA)和花生四烯酸(AA)作为底物表现出正协同作用。用内源性底物 α-LeA 和 LA 测定的酶速度随 pH 值升高而增加。对于 α-LeA,这种增加伴随着碱性 pH 下底物亲和力的降低;因此,在测试的 pH 范围内,α-LeA 的催化效率不受影响。Ser 磷酸变异体的分析表明,拟磷酸化抑制酶活性。当 α-LeA 或 AA 用作底物时,Atlox2 和 Atlox2 中的磷酸模拟物没有检测到 AtLOX2 活性。相比之下,磷酸突变体 Atlox2 对所有三种底物(α-LeA、LA 和 AA)均表现出强烈的活性。AtLOX2 AlphaFold 模型与 8R-LOX 和 20C 多不饱和脂肪酸之间的复合物之间的结构比较表明,AtLOX2 Ser 和多不饱和脂肪酸的羧酸头基团之间的距离很近。该分析表明 Ser 位于 AtLOX2 结构的关键位置,并强调了 Ser 磷酸化如何影响 AtLOX2 催化活性。总体而言,我们提出 AtLOX2 Ser 磷酸化代表了调节 AtLOX2 活性以及茉莉酸生物合成途径和植物抗性的关键机制。