The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.
Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, United States.
Methods Enzymol. 2023;678:237-262. doi: 10.1016/bs.mie.2022.11.003. Epub 2022 Dec 8.
Antibodies are an established class of human therapeutics. Epitope characterization is an important part of therapeutic antibody discovery. However, structural characterization of antibody-antigen complexes remains challenging. On the one hand, X-ray crystallography or cryo-electron microscopy provide atomic resolution characterization of the epitope, but the data collection process is typically long and the success rate is low. On the other hand, computational methods for modeling antibody-antigen structures from the individual components frequently suffer from a high false positive rate, rarely resulting in a unique solution. Recent deep learning models for structure prediction are also successful in predicting protein-protein complexes. However, they do not perform well for antibody-antigen complexes. Small Angle X-ray Scattering (SAXS) is a reliable technique for rapid structural characterization of protein samples in solution albeit at low resolution. Here, we present an integrative approach for modeling antigen-antibody complexes using the antibody sequence, antigen structure, and experimentally determined SAXS profiles of the antibody, antigen, and the complex. The method models antibody structures using a novel deep-learning approach, NanoNet. The structures of the antibodies and antigens are represented using multiple 3D conformations to account for compositional and conformational heterogeneity of the protein samples that are used to collect the SAXS data. The complexes are predicted by integrating the SAXS profiles with scoring functions for protein-protein interfaces that are based on statistical potentials and antibody-specific deep-learning models. We validated the method via application to four Fab:EGFR and one Fab:PCSK9 antibody:antigen complexes with experimentally available SAXS datasets. The integrative approach returns accurate predictions (interface RMSD<4Å) in the top five predictions for four out of five complexes (respective interface RMSD values of 1.95, 2.18, 2.66 and 3.87Å), providing support for the utility of such a computational pipeline for epitope characterization during therapeutic antibody discovery.
抗体是一类已被广泛应用的人类治疗药物。表位特征分析是治疗性抗体发现的重要组成部分。然而,抗体-抗原复合物的结构特征分析仍然具有挑战性。一方面,X 射线晶体学或低温电子显微镜可提供表位的原子分辨率特征分析,但数据采集过程通常耗时较长,成功率较低。另一方面,从单个组件对抗体-抗原结构进行建模的计算方法通常存在较高的假阳性率,很少能得出唯一的解决方案。最近,用于预测蛋白质-蛋白质复合物结构的深度学习模型也取得了成功。然而,它们在预测抗体-抗原复合物方面的表现并不理想。小角 X 射线散射(SAXS)是一种快速分析溶液中蛋白质样品结构的可靠技术,尽管分辨率较低。在这里,我们提出了一种使用抗体序列、抗原结构以及抗体、抗原和复合物的实验确定的 SAXS 图谱对抗原-抗体复合物进行建模的综合方法。该方法使用新型深度学习方法 NanoNet 对抗体结构进行建模。使用多个 3D 构象来表示抗体和抗原的结构,以解释用于收集 SAXS 数据的蛋白质样品的组成和构象异质性。通过将 SAXS 图谱与基于统计势和抗体特异性深度学习模型的蛋白质-蛋白质界面评分函数相结合,来预测复合物。我们通过将该方法应用于四个 Fab:EGFR 和一个 Fab:PCSK9 抗体-抗原复合物的实验 SAXS 数据集来验证该方法。综合方法在五个复合物中的四个复合物(分别为 1.95、2.18、2.66 和 3.87Å 的接口 RMSD 值)的前五个预测中返回了准确的预测结果(接口 RMSD<4Å),这为在治疗性抗体发现过程中进行表位特征分析提供了此类计算管道的实用性支持。