Suppr超能文献

结合小角 X 射线散射(SAXS)与蛋白质结构预测来描绘溶液中的构象。

Combining small angle X-ray scattering (SAXS) with protein structure predictions to characterize conformations in solution.

机构信息

Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.

Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States; Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, United States.

出版信息

Methods Enzymol. 2023;678:351-376. doi: 10.1016/bs.mie.2022.09.023. Epub 2022 Oct 31.

Abstract

Accurate protein structure predictions, enabled by recent advances in machine learning algorithms, provide an entry point to probing structural mechanisms and to integrating and querying many types of biochemical and biophysical results. Limitations in such protein structure predictions can be reduced and addressed through comparison to experimental Small Angle X-ray Scattering (SAXS) data that provides protein structural information in solution. SAXS data can not only validate computational predictions, but can improve conformational and assembly prediction to produce atomic models that are consistent with solution data and biologically relevant states. Here, we describe how to obtain protein structure predictions, compare them to experimental SAXS data and improve models to reflect experimental information from SAXS data. Furthermore, we consider the potential for such experimentally-validated protein structure predictions to broadly improve functional annotation in proteins identified in metagenomics and to identify functional clustering on conserved sites despite low sequence homology.

摘要

准确的蛋白质结构预测,得益于最近机器学习算法的进步,为探测结构机制以及整合和查询多种类型的生化和生物物理结果提供了一个切入点。通过与实验性小角 X 射线散射(SAXS)数据进行比较,可以减少和解决蛋白质结构预测中的局限性,该数据在溶液中提供蛋白质结构信息。SAXS 数据不仅可以验证计算预测,还可以改进构象和组装预测,以产生与溶液数据和具有生物学相关性的状态一致的原子模型。在这里,我们描述了如何获得蛋白质结构预测,将其与实验 SAXS 数据进行比较,并改进模型以反映 SAXS 数据中的实验信息。此外,我们还考虑了这种经过实验验证的蛋白质结构预测在广泛提高宏基因组学中鉴定的蛋白质的功能注释方面的潜力,以及在低序列同源性的情况下识别保守位点上的功能聚类的潜力。

相似文献

1
Combining small angle X-ray scattering (SAXS) with protein structure predictions to characterize conformations in solution.
Methods Enzymol. 2023;678:351-376. doi: 10.1016/bs.mie.2022.09.023. Epub 2022 Oct 31.
6
Multi-state modeling of antibody-antigen complexes with SAXS profiles and deep-learning models.
Methods Enzymol. 2023;678:237-262. doi: 10.1016/bs.mie.2022.11.003. Epub 2022 Dec 8.
7
Structural analysis of flexible proteins in solution by small angle X-ray scattering combined with crystallography.
J Struct Biol. 2007 May;158(2):214-23. doi: 10.1016/j.jsb.2006.09.008. Epub 2006 Oct 27.
8
Accurate SAXS profile computation and its assessment by contrast variation experiments.
Biophys J. 2013 Aug 20;105(4):962-74. doi: 10.1016/j.bpj.2013.07.020.
9
Structure modeling from small angle X-ray scattering data with elastic network normal mode analysis.
J Struct Biol. 2011 Mar;173(3):451-60. doi: 10.1016/j.jsb.2010.09.008. Epub 2010 Sep 17.
10
A practical guide to small angle X-ray scattering (SAXS) of flexible and intrinsically disordered proteins.
FEBS Lett. 2015 Sep 14;589(19 Pt A):2570-7. doi: 10.1016/j.febslet.2015.08.027. Epub 2015 Aug 29.

引用本文的文献

2
Resolving the conformational ensemble of a membrane protein by integrating small-angle scattering with AlphaFold.
PLoS Comput Biol. 2025 Jun 27;21(6):e1013187. doi: 10.1371/journal.pcbi.1013187. eCollection 2025 Jun.
3
Use of AI-methods over MD simulations in the sampling of conformational ensembles in IDPs.
Front Mol Biosci. 2025 Apr 8;12:1542267. doi: 10.3389/fmolb.2025.1542267. eCollection 2025.
4
Hidden Structural States of Proteins Revealed by Conformer Selection with AlphaFold-NMR.
Res Sq. 2025 Feb 19:rs.3.rs-5994356. doi: 10.21203/rs.3.rs-5994356/v1.
5
A predictive chromatin architecture nexus regulates transcription and DNA damage repair.
J Biol Chem. 2025 Mar;301(3):108300. doi: 10.1016/j.jbc.2025.108300. Epub 2025 Feb 11.
7
Selective deuteration of an RNA:RNA complex for structural analysis using small-angle scattering.
bioRxiv. 2024 Sep 9:2024.09.09.612093. doi: 10.1101/2024.09.09.612093.
9
Hidden Structural States of Proteins Revealed by Conformer Selection with AlphaFold-NMR.
bioRxiv. 2025 Feb 26:2024.06.26.600902. doi: 10.1101/2024.06.26.600902.
10
The power and pitfalls of AlphaFold2 for structure prediction beyond rigid globular proteins.
Nat Chem Biol. 2024 Aug;20(8):950-959. doi: 10.1038/s41589-024-01638-w. Epub 2024 Jun 21.

本文引用的文献

1
Improved AlphaFold modeling with implicit experimental information.
Nat Methods. 2022 Nov;19(11):1376-1382. doi: 10.1038/s41592-022-01645-6. Epub 2022 Oct 20.
3
Protein structure predictions to atomic accuracy with AlphaFold.
Nat Methods. 2022 Jan;19(1):11-12. doi: 10.1038/s41592-021-01362-6.
5
DisProt in 2022: improved quality and accessibility of protein intrinsic disorder annotation.
Nucleic Acids Res. 2022 Jan 7;50(D1):D480-D487. doi: 10.1093/nar/gkab1082.
7
Applying and improving AlphaFold at CASP14.
Proteins. 2021 Dec;89(12):1711-1721. doi: 10.1002/prot.26257.
8
Critical assessment of methods of protein structure prediction (CASP)-Round XIV.
Proteins. 2021 Dec;89(12):1607-1617. doi: 10.1002/prot.26237. Epub 2021 Oct 7.
9
Protein oligomer modeling guided by predicted interchain contacts in CASP14.
Proteins. 2021 Dec;89(12):1824-1833. doi: 10.1002/prot.26197. Epub 2021 Aug 23.
10
Highly accurate protein structure prediction for the human proteome.
Nature. 2021 Aug;596(7873):590-596. doi: 10.1038/s41586-021-03828-1. Epub 2021 Jul 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验