Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States; Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, United States.
Methods Enzymol. 2023;678:351-376. doi: 10.1016/bs.mie.2022.09.023. Epub 2022 Oct 31.
Accurate protein structure predictions, enabled by recent advances in machine learning algorithms, provide an entry point to probing structural mechanisms and to integrating and querying many types of biochemical and biophysical results. Limitations in such protein structure predictions can be reduced and addressed through comparison to experimental Small Angle X-ray Scattering (SAXS) data that provides protein structural information in solution. SAXS data can not only validate computational predictions, but can improve conformational and assembly prediction to produce atomic models that are consistent with solution data and biologically relevant states. Here, we describe how to obtain protein structure predictions, compare them to experimental SAXS data and improve models to reflect experimental information from SAXS data. Furthermore, we consider the potential for such experimentally-validated protein structure predictions to broadly improve functional annotation in proteins identified in metagenomics and to identify functional clustering on conserved sites despite low sequence homology.
准确的蛋白质结构预测,得益于最近机器学习算法的进步,为探测结构机制以及整合和查询多种类型的生化和生物物理结果提供了一个切入点。通过与实验性小角 X 射线散射(SAXS)数据进行比较,可以减少和解决蛋白质结构预测中的局限性,该数据在溶液中提供蛋白质结构信息。SAXS 数据不仅可以验证计算预测,还可以改进构象和组装预测,以产生与溶液数据和具有生物学相关性的状态一致的原子模型。在这里,我们描述了如何获得蛋白质结构预测,将其与实验 SAXS 数据进行比较,并改进模型以反映 SAXS 数据中的实验信息。此外,我们还考虑了这种经过实验验证的蛋白质结构预测在广泛提高宏基因组学中鉴定的蛋白质的功能注释方面的潜力,以及在低序列同源性的情况下识别保守位点上的功能聚类的潜力。