Suppr超能文献

基因组解析宏基因组学揭示了高度分层、AMD 覆盖的矿山尾矿中微生物群落结构和功能的深度相关模式。

Genome-resolved metagenomics reveals depth-related patterns of microbial community structure and functions in a highly stratified, AMD overlaying mine tailings.

机构信息

State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.

Guangdong Heavy Metal Mine Ecological Restoration Engineering Technology Research Center, Shaoguan, China.

出版信息

J Hazard Mater. 2023 Apr 5;447:130774. doi: 10.1016/j.jhazmat.2023.130774. Epub 2023 Jan 10.

Abstract

Acid mine drainage (AMD) is a worldwide environmental problem, yet bioremediation is hampered by a limited knowledge of the reductive microbial processes in the AMD ecosystem. Here, we generate extensive metagenome and geochemical datasets to investigate how microbial populations and metabolic capacities driving major element cycles are structured in a highly stratified, AMD overlaying tailings environment. The results demonstrated an explicit depth-dependent differentiation of microbial community composition and function profiles between the surface and deeper tailings layers, paralleling the dramatic shifts in major physical and geochemical properties. Specifically, key genes involved in sulfur and iron oxidation were significantly enriched in the surface tailings, whereas those associated with reductive nitrogen, sulfur, and iron processes were enriched in the deeper layers. Genome-resolved metagenomics retrieved 406 intermediate or high-quality genomes spanning 26 phyla, including major new groups (e.g., Patescibacteria and DPANN). Metabolic models involving nitrogen, sulfur, iron, and carbon cycles were proposed based on the functional potentials of the abundant microbial genomes, emphasizing syntrophy and the importance of lesser-known taxa in the degradation of complex carbon compounds. These results have implications for in situ AMD bioremediation.

摘要

酸性矿山排水 (AMD) 是一个全球性的环境问题,但由于对 AMD 生态系统中还原性微生物过程的了解有限,生物修复受到了阻碍。在这里,我们生成了广泛的宏基因组和地球化学数据集,以研究在高度分层的 AMD 覆盖尾矿环境中,驱动主要元素循环的微生物种群和代谢能力是如何构建的。结果表明,微生物群落组成和功能谱在表层和深层尾矿层之间存在明显的深度依赖性分化,与主要物理和地球化学性质的剧烈变化相平行。具体来说,与硫和铁氧化有关的关键基因在表层尾矿中显著富集,而与还原氮、硫和铁过程相关的基因则在深层中富集。基于 26 个门的 406 个中等到高质量的基因组进行了基因组解析宏基因组学研究,其中包括主要的新群体(例如 Patescibacteria 和 DPANN)。根据丰富微生物基因组的功能潜力,提出了涉及氮、硫、铁和碳循环的代谢模型,强调了共生和鲜为人知的类群在复杂碳化合物降解中的重要性。这些结果对原位 AMD 生物修复具有重要意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验