Suppr超能文献

使用模糊c均值和k均值的雅加达医院聚类模型。

Clustering models for hospitals in Jakarta using fuzzy c-means and k-means.

作者信息

Setiawan Karli Eka, Kurniawan Afdhal, Chowanda Andry, Suhartono Derwin

机构信息

Computer Science Department, School of Computer Science, Bina Nusantara University, Jakarta, Indonesia 11480.

出版信息

Procedia Comput Sci. 2023;216:356-363. doi: 10.1016/j.procs.2022.12.146. Epub 2023 Jan 10.

Abstract

After facing the COVID-19 pandemic, national and local governments in Indonesia realized a gap in the distribution of health care and human health practitioners. This research proposes two unsupervised learning methods, K-Means and Fuzzy C-Means (FCM), for clustering a list of hospital data in Jakarta, Indonesia, which contains information about the number of its human health resources. The datasets used in this study were obtained from the website the Ministry of the Health Republic of Indonesia provided through the content scraping method. The result shows that implementing K-Means and FCM clustering results in the same number of clusters. Nevertheless, both results have different areas and proportions that can be observed by three distance metrics, such as Hamming, Euclidean, and Manhattan distance. By using the clustering result using the K-Means algorithm, the hospital list was separated into three clusters with a proportion of 84.82%, 14.66%, and 0.52% for clusters 0, 1, and 2, respectively. Meanwhile, using the FCM algorithm, the hospital list was separated into three clusters with a proportion of 17.80%, 73.82%, and 8.38% for clusters 0, 1, and 2, respectively. To the best of our knowledge, this is the first discussion of clustering healthcare facilities in Indonesia, especially hospitals, based on their health professionals.

摘要

在面对新冠疫情后,印度尼西亚的国家和地方政府意识到医疗保健及医疗卫生从业者分布存在差距。本研究提出了两种无监督学习方法,即K均值和模糊C均值(FCM),用于对印度尼西亚雅加达的医院数据列表进行聚类,该列表包含其医疗卫生资源数量的信息。本研究中使用的数据集是通过内容抓取方法从印度尼西亚共和国卫生部网站获取的。结果表明,实施K均值和FCM聚类得到的聚类数量相同。然而,通过汉明、欧几里得和曼哈顿距离这三种距离度量可以观察到,两者的结果在区域和比例上有所不同。使用K均值算法的聚类结果,医院列表被分为三个聚类,聚类0、1和2的比例分别为84.82%、14.66%和0.52%。同时,使用FCM算法,医院列表被分为三个聚类,聚类0、1和2的比例分别为17.80%、73.82%和8.38%。据我们所知,这是首次基于医疗专业人员对印度尼西亚的医疗保健设施,尤其是医院进行聚类的讨论。

相似文献

2
Generalized fuzzy C-means clustering algorithm with improved fuzzy partitions.具有改进模糊划分的广义模糊C均值聚类算法
IEEE Trans Syst Man Cybern B Cybern. 2009 Jun;39(3):578-91. doi: 10.1109/TSMCB.2008.2004818. Epub 2009 Jan 23.
6
Collaborative fuzzy clustering from multiple weighted views.多加权视图的协同模糊聚类。
IEEE Trans Cybern. 2015 Apr;45(4):688-701. doi: 10.1109/TCYB.2014.2334595. Epub 2014 Jul 23.
8
eFCM: An Enhanced Fuzzy C-Means Algorithm for Longitudinal Intervention Data.eFCM:一种用于纵向干预数据的增强型模糊C均值算法
Int Conf Comput Netw Commun. 2018 Mar;2018:912-916. doi: 10.1109/ICCNC.2018.8390419. Epub 2018 Jun 21.

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验