Wang Lanyun, Chen Yu, Xu Yongliang, Zhang Yajuan, Li Yao, Wang Yan, Wei Jianping, Chu Tingxiang
School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo454003, China.
Collaborative Innovation Center for Coal Safety Production & High-Efficient-Clean Utilization for Coal by Provincial and Ministerial Co-Construction, Jiaozuo454003, China.
ACS Omega. 2022 Dec 24;8(1):1191-1205. doi: 10.1021/acsomega.2c06621. eCollection 2023 Jan 10.
The paper elaborates the effects of ionic liquids (ILs) on the phase equilibrium temperature, induction time, gas consumption, gas consumption rate, and water to hydrate conversion in the presence of 0.25, 0.63, 0.95, 1.25, 3.75, 6.25, and 10.00 wt % ethyltributylphosphonium hexafluorophosphate ([P][PF]), tributylhexylphosphonium hexafluorophosphate ([P][PF]), tetraethylammonium bromide ([N]Br), tetraethylammonium bistrifluoromethanesulfonimide ([N][NTf]), and tetraethylammonium hexafluorophosphate ([N][PF]) under a pressure of 2 MPa. The results indicate that all five ILs could increase CO consumption and enhance the water to hydrate conversion. Compared with the pure water system, [P][PF] and [P][PF] shifted the phase equilibrium temperature of CO hydrates to a slightly higher temperature with reduced induction times by boosting CO hydrate nucleation, showing the dual function promotion effects. In contrast, [N]Br, [N][NTf], and [N][PF] shifted the phase equilibrium temperature of CO hydrates to a lower temperature and prolonged the induction time by slowing down CO hydrate nucleation. The inhibition effects of anions on CO hydrates follow an order of Br > [NTf] > [PF]. Besides, the density functional theory and molecular dynamic calculations were conducted to explain the inconsistent influences of [N]Br and [N]Br on CO hydrate formation. It was found that the anion-cation interaction of [N]Br was stronger than that of [N]Br, and Br in [N]Br is less likely to participate in the formation of hydrate cages in the [N]Br + HO + CO system according to the intermolecular anion-water, anion-CO, and water-water radial distribution function in [N]Br + HO + CO and [N]Br + HO + CO systems.
本文阐述了在2 MPa压力下,离子液体(ILs)对0.25、0.63、0.95、1.25、3.75、6.25和10.00 wt%的乙基三丁基溴化鏻六氟磷酸盐([P][PF])、三丁基己基溴化鏻六氟磷酸盐([P][PF])、四乙基溴化铵([N]Br)、四乙基双三氟甲磺酰亚胺铵([N][NTf])和四乙基六氟磷酸铵([N][PF])存在下的水合物相平衡温度、诱导时间、气体消耗、气体消耗速率以及水向水合物转化的影响。结果表明,所有五种离子液体都能增加CO消耗并提高水向水合物的转化率。与纯水体系相比,[P][PF]和[P][PF]通过促进CO水合物成核,将CO水合物的相平衡温度略微提高,并缩短了诱导时间,显示出双重促进作用。相比之下,[N]Br、[N][NTf]和[N][PF]将CO水合物的相平衡温度降低,并通过减缓CO水合物成核延长了诱导时间。阴离子对CO水合物的抑制作用顺序为Br > [NTf] > [PF]。此外,进行了密度泛函理论和分子动力学计算,以解释[P]Br和[P]Br对CO水合物形成的不一致影响。研究发现,[P]Br的阴离子 - 阳离子相互作用强于[P]Br,并且根据[P]Br + HO + CO和[P]Br + HO + CO体系中的分子间阴离子 - 水、阴离子 - CO和水 - 水径向分布函数,[P]Br中的Br不太可能参与[P]Br + HO + CO体系中水合物笼的形成。