Nguyen Viet D, Trevino Ramon, Greco Samuel G, Arman Hadi D, Larionov Oleg V
Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States.
ACS Catal. 2022 Jul 15;12(14):8729-8739. doi: 10.1021/acscatal.2c02332. Epub 2022 Jul 6.
Dual catalytic systems involving photocatalytic activation and transition metal-catalyzed steps have enabled innovative approaches to the construction of carbon-carbon and carbon-heteroatom bonds. However, the mechanistic complexity of the dual catalytic processes presents multiple challenges for understanding of the roles of divergent catalytic species that can impede the development of future synthetic methods. Here, we report a dual catalytic process that enables the previously inaccessible, broad-scope, direct conversion of carboxylic acids to aromatic sulfones-centrally important carbonyl group bioisosteric replacements and synthetic intermediates-by a tricomponent decarboxysulfonylative cross-coupling with aryl halides. Detailed mechanistic and computational studies revealed the roles of the copper catalyst, base, and halide anions in channeling the acridine/copper system via a distinct dual catalytic manifold. In contrast to the halide-free decarboxylative conjugate addition that involves cooperative dual catalysis via low-valent copper species, the halide counteranions divert the decarboxysulfonylative cross-coupling with aryl halides through a two-phase, orthogonal relay catalytic manifold, comprising a kinetically coupled (via antithetical inhibitory and activating roles of the base in the two catalytic cycles), mechanistically discrete sequence of a photoinduced, acridine-catalyzed decarboxylative process and a thermal copper-catalyzed arylative coupling. The study underscores the importance of non-innocent roles of counteranions and key redox steps at the interface of catalytic cycles for enabling previously inaccessible dual catalytic transformations.
涉及光催化活化和过渡金属催化步骤的双催化体系为碳-碳键和碳-杂原子键的构建提供了创新方法。然而,双催化过程的机理复杂性给理解不同催化物种的作用带来了多重挑战,这可能会阻碍未来合成方法的发展。在此,我们报道了一种双催化过程,该过程通过与芳基卤化物的三组分脱羧磺酰化交叉偶联,实现了羧酸向芳基砜的前所未有的、广泛适用的直接转化,芳基砜是至关重要的羰基生物电子等排体替代物和合成中间体。详细的机理和计算研究揭示了铜催化剂、碱和卤离子在通过独特的双催化歧管引导吖啶/铜体系中的作用。与通过低价铜物种进行协同双催化的无卤脱羧共轭加成不同,卤离子反离子通过两相正交接力催化歧管使与芳基卤化物的脱羧磺酰化交叉偶联发生转向,该歧管包括一个动力学耦合的(通过碱在两个催化循环中的相反抑制和活化作用)、机理上离散的光诱导吖啶催化脱羧过程和热铜催化芳基化偶联序列。该研究强调了反离子的非惰性作用以及催化循环界面处关键氧化还原步骤对于实现前所未有的双催化转化的重要性。