Suppr超能文献

可见光吖啶鎓基有机光氧化还原催化在后期合成应用中的研究

Visible-light acridinium-based organophotoredox catalysis in late-stage synthetic applications.

作者信息

Singh Praveen P, Singh Jaya, Srivastava Vishal

机构信息

Department of Chemistry, United College of Engineering & Research Naini Prayagraj 211010 India

Department of Chemistry, LRPG College Sahibabad Gaziabad Uttar Pradesh India.

出版信息

RSC Adv. 2023 Apr 6;13(16):10958-10986. doi: 10.1039/d3ra01364b. eCollection 2023 Apr 3.

Abstract

The field of photoredox catalysis has been transformed by the use of organic photocatalysts, which give access to re-activities that were previously only possible with transition-metal photocatalysts. Recent advancements in the use of an acridinium photocatalyst in organic synthesis are covered in this review. Both the late-stage functionalization of biorelevant molecules and the activation of inert chemical bonds are explored, with an emphasis on their mechanistic features.

摘要

有机光催化剂的应用改变了光氧化还原催化领域,它能实现一些以前只有过渡金属光催化剂才能达到的反应活性。本文综述了吖啶鎓光催化剂在有机合成中的最新进展。文中探讨了生物相关分子的后期官能团化以及惰性化学键的活化,并着重介绍了它们的机理特点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a66/10077514/5f03cc0c5edd/d3ra01364b-s1.jpg

相似文献

1
Visible-light acridinium-based organophotoredox catalysis in late-stage synthetic applications.
RSC Adv. 2023 Apr 6;13(16):10958-10986. doi: 10.1039/d3ra01364b. eCollection 2023 Apr 3.
2
Acridinium Salts and Cyanoarenes as Powerful Photocatalysts: Opportunities in Organic Synthesis.
Angew Chem Int Ed Engl. 2021 Sep 1;60(36):19526-19549. doi: 10.1002/anie.202102262. Epub 2021 May 14.
3
Pioneering Metal-Free Late-Stage C-H Functionalization Using Acridinium Salt Photocatalysis.
Chemistry. 2024 Dec 2;30(67):e202402809. doi: 10.1002/chem.202402809. Epub 2024 Oct 21.
5
Recent progress in organophotoredox reaction.
Org Biomol Chem. 2022 Aug 31;20(34):6721-6740. doi: 10.1039/d2ob00807f.
6
Correction: Visible-light acridinium-based organophotoredox catalysis in late-stage synthetic applications.
RSC Adv. 2024 Feb 13;14(8):5600. doi: 10.1039/d4ra90011a. eCollection 2024 Feb 7.
7
Ad Hoc Adjustment of Photoredox Properties by the Late-Stage Diversification of Acridinium Photocatalysts.
Org Lett. 2021 Jul 2;23(13):5143-5147. doi: 10.1021/acs.orglett.1c01673. Epub 2021 Jun 10.
8
Nucleophilic Aromatic Substitution of Unactivated Aryl Fluorides with Primary Aliphatic Amines by Organic Photoredox Catalysis.
Chemistry. 2020 Nov 20;26(65):14823-14827. doi: 10.1002/chem.202002315. Epub 2020 Oct 15.
9
Functionalization of C-H Bonds by Photoredox Catalysis.
Chem Rec. 2017 Aug;17(8):754-774. doi: 10.1002/tcr.201600125. Epub 2017 Jan 11.

引用本文的文献

1
Design of aminoanthraquinone-based heterogeneous photocatalysts for visible-light-driven reactions and antibacterial applications.
RSC Adv. 2025 Jul 11;15(30):24393-24405. doi: 10.1039/d5ra03539b. eCollection 2025 Jul 10.
2
N-Protonated Acridinium Catalyst Enables Anti-Markovnikov Hydration of Unconjugated Tri- and Disubstituted Olefins.
J Am Chem Soc. 2025 Feb 12;147(6):4736-4742. doi: 10.1021/jacs.4c18185. Epub 2025 Jan 31.
3
Difluoromethoxide Is a Strong Leaving Group in the Photoredox Deoxyradiofluorination of 2-Phenylpyridines.
J Org Chem. 2024 Sep 20;89(18):13768-13773. doi: 10.1021/acs.joc.4c01505. Epub 2024 Sep 11.
4
Light-driven photocatalysis as an effective tool for degradation of antibiotics.
RSC Adv. 2024 Jun 27;14(29):20492-20515. doi: 10.1039/d4ra03431g.
6
Novel applications of photobiocatalysts in chemical transformations.
RSC Adv. 2024 Jan 15;14(4):2590-2601. doi: 10.1039/d3ra07371h. eCollection 2024 Jan 10.

本文引用的文献

1
Aliphatic C-H Functionalization Using Pyridine -Oxides as H-Atom Abstraction Agents.
ACS Catal. 2022 Aug 19;12(16):10499-10505. doi: 10.1021/acscatal.2c02997. Epub 2022 Aug 10.
3
Metal-free visible light mediated direct C-H amination of benzoxazole with secondary amines.
Mol Divers. 2024 Feb;28(1):61-71. doi: 10.1007/s11030-022-10595-2. Epub 2023 Jan 7.
4
Visible light-induced photoredox catalyzed C-N coupling of amides with alcohols.
RSC Adv. 2022 Dec 8;12(54):35221-35226. doi: 10.1039/d2ra07065k. eCollection 2022 Dec 6.
5
Organophotocatalysis Enables the Synthesis of -Fluorophosphonate Alkenes.
Org Lett. 2022 Nov 18;24(45):8343-8347. doi: 10.1021/acs.orglett.2c03366. Epub 2022 Nov 9.
6
Molybdenum disulfide (MoS) based photoredox catalysis in chemical transformations.
RSC Adv. 2022 Oct 18;12(46):29826-29839. doi: 10.1039/d2ra05695j. eCollection 2022 Oct 17.
7
Alkyl Radical Generation via C-C Bond Cleavage in 2-Substituted Oxazolidines.
ACS Catal. 2022 Oct 7;12(19):12469-12476. doi: 10.1021/acscatal.2c03768. Epub 2022 Sep 29.
8
Shining Visible Light on Reductive Elimination: Acridine-Pd-Catalyzed Cross-Coupling of Aryl Halides with Carboxylic Acids.
J Am Chem Soc. 2022 Oct 26;144(42):19592-19602. doi: 10.1021/jacs.2c09318. Epub 2022 Oct 11.
9
Probing the Free Energy Landscape of Organophotoredox-Catalyzed Anti-Markovnikov Hydrofunctionalization of Alkenes.
J Am Chem Soc. 2022 Sep 28;144(38):17692-17699. doi: 10.1021/jacs.2c07807. Epub 2022 Sep 16.
10
One-Step Visible Light Photoredox-Catalyzed Purine C8 Alkoxylation with Alcohol.
J Org Chem. 2022 Sep 2;87(17):11558-11564. doi: 10.1021/acs.joc.2c01146. Epub 2022 Aug 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验