School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials and Physics (CECMP), Soochow University, Suzhou, 215006, P. R. China.
Adv Sci (Weinh). 2023 Mar;10(8):e2206729. doi: 10.1002/advs.202206729. Epub 2023 Jan 16.
The application of photoelectrochemical (PEC) water splitting is limited by the sluggish surface oxygen evolution reaction (OER) kinetics. OER kinetics can be effectively improved through cocatalyst engineering. However, the tardy transfer process and serious recombination of carriers are the key factors restricting the cocatalyst development. Taking BiVO as an example, a Co-modified heme film rich in large conjugated ring structures is introduced onto the photoanode surface using a solvothermal method. This film functions as an efficient cocatalyst. It considerably reduces the surface overpotential, promotes the transfer of photogenerated holes, and boosts the kinetics of OER by specifically affecting the formation of OOH*. Simultaneously, the formed CoOV bonds induce strong interaction at the photoanode/cocatalyst interfaces, reducing the recombination of photogenerated carriers. Consequently, the onset potential of the optimized photoanode decreases from 0.45 to 0.07 V and the photocurrent density at 1.23 V versus reversible hydrogen electrode boosts to 5.3 mA cm . This work demonstrates a facile strategy for designing cocatalysts to obtain rapid hole transfer capability and reduced carrier recombination for improved PEC performance.
光电化学 (PEC) 水分解的应用受到缓慢的表面析氧反应 (OER) 动力学的限制。通过共催化剂工程可以有效地提高 OER 动力学。然而,载流子的迟缓转移过程和严重复合是限制共催化剂发展的关键因素。以 BiVO 为例,采用溶剂热法将富含大共轭环结构的 Co 修饰血红素膜引入光阳极表面。该薄膜作为一种有效的共催化剂。它通过特定地影响 OOH*的形成,显著降低表面过电位,促进光生空穴的转移,并加速 OER 的动力学。同时,形成的 CoOV 键在光阳极/共催化剂界面处引起强烈的相互作用,减少光生载流子的复合。因此,优化后的光阳极的起始电位从 0.45 降低至 0.07 V,在相对于可逆氢电极 1.23 V 时的光电流密度提高至 5.3 mA cm 。这项工作展示了一种设计共催化剂的简便策略,以获得快速的空穴转移能力和减少载流子复合,从而提高 PEC 性能。