Joint Quantum Institute, NIST/University of Maryland, College Park, MD, USA.
Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD, USA.
Nat Commun. 2023 Jan 16;14(1):242. doi: 10.1038/s41467-022-35746-9.
Optical parametric oscillation (OPO) is distinguished by its wavelength access, that is, the ability to flexibly generate coherent light at wavelengths that are dramatically different from the pump laser, and in principle bounded solely by energy conservation between the input pump field and the output signal/idler fields. As society adopts advanced tools in quantum information science, metrology, and sensing, microchip OPO may provide an important path for accessing relevant wavelengths. However, a practical source of coherent light should additionally have high conversion efficiency and high output power. Here, we demonstrate a silicon photonics OPO device with unprecedented performance. Our OPO device, based on the third-order (χ) nonlinearity in a silicon nitride microresonator, produces output signal and idler fields widely separated from each other in frequency ( > 150 THz), and exhibits a pump-to-idler conversion efficiency up to 29 % with a corresponding output idler power of > 18 mW on-chip. This performance is achieved by suppressing competitive processes and by strongly overcoupling the output light. This methodology can be readily applied to existing silicon photonics platforms with heterogeneously-integrated pump lasers, enabling flexible coherent light generation across a broad range of wavelengths with high output power and efficiency.
光学参量振荡(OPO)的特点是波长可调节,也就是说,它能够灵活地产生与泵浦激光显著不同的相干光,其波长仅受输入泵浦场与输出信号/闲频场之间能量守恒的限制。随着社会采用量子信息科学、计量学和传感技术等先进工具,微芯片 OPO 可能为访问相关波长提供一条重要途径。然而,一个实用的相干光源还应该具有高效率和高输出功率。在这里,我们展示了一种具有前所未有的性能的硅光子学 OPO 器件。我们的 OPO 器件基于氮化硅微谐振器中的三阶(χ)非线性,产生的信号和闲频输出场在频率上彼此广泛分离(> 150 THz),并且在芯片上实现了高达 29%的泵浦至闲频转换效率,相应的闲频输出功率> 18 mW。通过抑制竞争过程和强过耦合输出光,可以实现这种性能。这种方法可以很容易地应用于具有异质集成泵浦激光器的现有硅光子学平台,从而能够在高输出功率和效率下,通过灵活的相干光产生,实现广泛波长范围内的光的产生。