Department of Biology, University of Maryland, College Park, MD 20742.
Department of Biology, University of Maryland, College Park, MD 20742
eNeuro. 2023 Jan 25;10(1). doi: 10.1523/ENEURO.0109-22.2022. Print 2023 Jan.
Inhibitory interneurons are important for neuronal circuit function. They regulate sensory inputs and enhance output discriminability (Olsen and Wilson, 2008; Root et al., 2008; Olsen et al., 2010). Often, the identities of interneurons can be determined by location and morphology, which can have implications for their functions (Wachowiak and Shipley, 2006). While most interneurons fire traditional action potentials, many are nonspiking. These can be seen in insect olfaction (Laurent and Davidowitz, 1994; Husch et al., 2009; Tabuchi et al., 2015) and the vertebrate retina (Gleason et al., 1993). Here, we present the novel observation of nonspiking inhibitory interneurons in the antennal lobe (AL) of the adult fruit fly, These neurons have a morphology where they innervate a patchwork of glomeruli. We used electrophysiology to determine whether their nonspiking characteristic is because of a lack of sodium current. We then used immunohistochemsitry and hybridization to show this is likely achieved through translational regulation of the voltage-gated sodium channel gene, Using calcium imaging, we explored how these cells respond to odors, finding regional isolation in their responses' spatial patterns. Further, their response patterns were dependent on both odor identity and concentration. Thus, we surmise these neurons are electrotonically compartmentalized such that activation of the neurites in one region does not propagate across the whole antennal lobe. We propose these neurons may be the source of intraglomerular inhibition in the AL and may contribute to regulation of spontaneous activity within glomeruli.
抑制性中间神经元对于神经元回路功能很重要。它们调节感觉输入并增强输出的可辨别性(Olsen 和 Wilson,2008;Root 等人,2008;Olsen 等人,2010)。通常,可以根据位置和形态来确定中间神经元的身份,这可能对其功能有影响(Wachowiak 和 Shipley,2006)。虽然大多数中间神经元会产生传统的动作电位,但也有许多是非尖峰的。在昆虫嗅觉(Laurent 和 Davidowitz,1994;Husch 等人,2009;Tabuchi 等人,2015)和脊椎动物视网膜(Gleason 等人,1993)中可以看到这种情况。在这里,我们提出了一个新的观察结果,即在成年果蝇的触角叶(AL)中存在非尖峰抑制性中间神经元。这些神经元具有一种形态,它们可以支配斑块状的神经球。我们使用电生理学来确定它们的非尖峰特征是否是由于缺乏钠离子电流。然后,我们使用免疫组织化学和杂交来显示这可能是通过电压门控钠离子通道基因的翻译调控来实现的。我们使用钙成像来探索这些细胞对气味的反应,发现它们的反应模式在空间上存在区域隔离。此外,它们的反应模式取决于气味的身份和浓度。因此,我们推测这些神经元是电紧张的,使得一个区域的神经突的激活不会在整个触角叶中传播。我们提出这些神经元可能是 AL 内神经球内抑制的来源,并可能有助于调节神经球内的自发活动。