Lin Albert, Yang Runzhe, Dorkenwald Sven, Matsliah Arie, Sterling Amy R, Schlegel Philipp, Yu Szi-Chieh, McKellar Claire E, Costa Marta, Eichler Katharina, Bates Alexander Shakeel, Eckstein Nils, Funke Jan, Jefferis Gregory S X E, Murthy Mala
Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
Center for the Physics of Biological Function, Princeton University, Princeton, NJ, USA.
Nature. 2024 Oct;634(8032):153-165. doi: 10.1038/s41586-024-07968-y. Epub 2024 Oct 2.
Brains comprise complex networks of neurons and connections, similar to the nodes and edges of artificial networks. Network analysis applied to the wiring diagrams of brains can offer insights into how they support computations and regulate the flow of information underlying perception and behaviour. The completion of the first whole-brain connectome of an adult fly, containing over 130,000 neurons and millions of synaptic connections, offers an opportunity to analyse the statistical properties and topological features of a complete brain. Here we computed the prevalence of two- and three-node motifs, examined their strengths, related this information to both neurotransmitter composition and cell type annotations, and compared these metrics with wiring diagrams of other animals. We found that the network of the fly brain displays rich-club organization, with a large population (30% of the connectome) of highly connected neurons. We identified subsets of rich-club neurons that may serve as integrators or broadcasters of signals. Finally, we examined subnetworks based on 78 anatomically defined brain regions or neuropils. These data products are shared within the FlyWire Codex ( https://codex.flywire.ai ) and should serve as a foundation for models and experiments exploring the relationship between neural activity and anatomical structure.
大脑由神经元和连接组成的复杂网络构成,类似于人工网络的节点和边。应用于大脑布线图的网络分析能够深入了解大脑如何支持计算以及调节感知和行为背后的信息流。成年果蝇首个全脑连接组的完成,包含超过13万个神经元和数百万个突触连接,为分析完整大脑的统计特性和拓扑特征提供了契机。在此,我们计算了两节点和三节点基序的发生率,检查了它们的强度,将这些信息与神经递质组成和细胞类型注释相关联,并将这些指标与其他动物的布线图进行了比较。我们发现果蝇大脑网络呈现出富俱乐部组织,有大量(连接组的30%)高度连接的神经元。我们确定了富俱乐部神经元的子集,它们可能充当信号的整合者或传播者。最后,我们基于78个解剖学定义的脑区或神经纤维网检查了子网。这些数据产品在FlyWire Codex(https://codex.flywire.ai)中共享,应作为探索神经活动与解剖结构之间关系的模型和实验的基础。