Suppr超能文献

关于实施新版本的威布尔分布和机器学习方法来对新冠肺炎数据进行建模。

On the implementation of a new version of the Weibull distribution and machine learning approach to model the COVID-19 data.

作者信息

Zhou Yinghui, Ahmad Zubair, Almaspoor Zahra, Khan Faridoon, Tag-Eldin Elsayed, Iqbal Zahoor, El-Morshedy Mahmoud

机构信息

School of Information and Communication Engineering, Communication University of China, Beijing, China.

Department of Statistics, Yazd University, P. O. Box 89175-741, Yazd, Iran.

出版信息

Math Biosci Eng. 2023 Jan;20(1):337-364. doi: 10.3934/mbe.2023016. Epub 2022 Oct 8.

Abstract

Statistical methodologies have broader applications in almost every sector of life including education, hydrology, reliability, management, and healthcare sciences. Among these sectors, statistical modeling and predicting data in the healthcare sector is very crucial. In this paper, we introduce a new method, namely, a new extended exponential family to update the distributional flexibility of the existing models. Based on this approach, a new version of the Weibull model, namely, a new extended exponential Weibull model is introduced. The applicability of the new extended exponential Weibull model is shown by considering two data sets taken from the health sciences. The first data set represents the mortality rate of the patients infected by the coronavirus disease 2019 (COVID-19) in Mexico. Whereas, the second set represents the mortality rate of COVID-19 patients in Holland. Utilizing the same data sets, we carry out forecasting using three machine learning (ML) methods including support vector regression (SVR), random forest (RF), and neural network autoregression (NNAR). To assess their forecasting performances, two statistical accuracy measures, namely, root mean square error (RMSE) and mean absolute error (MAE) are considered. Based on our findings, it is observed that the RF algorithm is very effective in predicting the death rate of the COVID-19 data in Mexico. Whereas, for the second data, the SVR performs better as compared to the other methods.

摘要

统计方法在生活的几乎每个领域都有更广泛的应用,包括教育、水文、可靠性、管理和医疗科学。在这些领域中,医疗领域的统计建模和数据预测非常关键。在本文中,我们引入了一种新方法,即一种新的扩展指数族,以更新现有模型的分布灵活性。基于这种方法,引入了威布尔模型的一个新版本,即一种新的扩展指数威布尔模型。通过考虑从健康科学中获取的两个数据集,展示了新的扩展指数威布尔模型的适用性。第一个数据集表示2019年冠状病毒病(COVID-19)感染患者在墨西哥的死亡率。而第二个数据集表示荷兰COVID-19患者的死亡率。利用相同的数据集,我们使用三种机器学习(ML)方法进行预测,包括支持向量回归(SVR)、随机森林(RF)和神经网络自回归(NNAR)。为了评估它们的预测性能,考虑了两种统计准确性度量,即均方根误差(RMSE)和平均绝对误差(MAE)。根据我们的研究结果,观察到RF算法在预测墨西哥COVID-19数据的死亡率方面非常有效。而对于第二个数据集,与其他方法相比,SVR表现更好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验