Suppr超能文献

考虑碳排放和客户满意度的多中心联合分布优化模型。

A multi-center joint distribution optimization model considering carbon emissions and customer satisfaction.

机构信息

School of Management Engineering and Business, Hebei University of Engineering, Handan 056038, China.

出版信息

Math Biosci Eng. 2023 Jan;20(1):683-706. doi: 10.3934/mbe.2023031. Epub 2022 Oct 13.

Abstract

Logistics enterprises are searching for a sustainable solution between the economy and the environment under the concept of green logistics development. Given that, this study integrates carbon emission as one of the costs into the vehicle routing problem with time window (VRPTW) and establishes a multi-center joint distribution optimization model taking into account distribution cost, carbon emission, and customer satisfaction. In the study of carbon emissions, this paper selected the vehicle load rate and vehicle distance as the main indicators. An improved ant colony algorithm is designed to solve the model by introducing the elite strategy, the saving strategy, vehicle service rules, and customer selection rules. Simulation results show that compared with the traditional ant colony optimization and genetic algorithm, the improved ant colony algorithm can effectively reduce the distribution cost and carbon emission and, improve customer satisfaction.

摘要

物流企业在绿色物流发展理念下,一直在寻求经济与环境之间的可持续解决方案。有鉴于此,本研究将碳排放作为成本之一纳入带时间窗的车辆路径问题(VRPTW),并建立了一个考虑配送成本、碳排放和客户满意度的多中心联合配送优化模型。在碳排放研究中,本文选择了车辆负载率和车辆距离作为主要指标。通过引入精英策略、节约策略、车辆服务规则和客户选择规则,设计了一种改进的蚁群算法来求解模型。仿真结果表明,与传统的蚁群优化算法和遗传算法相比,改进的蚁群算法可以有效地降低配送成本和碳排放,提高客户满意度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验