State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
Department of Materials Science and Engineering, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, P. R. China.
Small. 2023 Mar;19(10):e2206440. doi: 10.1002/smll.202206440. Epub 2023 Jan 17.
It is a substantial challenge to construct electrocatalysts with high activity, good selectivity, and long-term stability for electrocatalytic reduction of carbon dioxide to formic acid. Herein, bismuth and indium species are innovatively integrated into a uniform heterogeneous spherical structure by a neoteric quasi-microemulsion method, and a novel C@In O @Bi core-shell structure is constructed through a subsequent one-step phase separation strategy due to melting point difference and Kirkendall effect with the nano-limiting effect of the carbon structure. This core-shell C@In O @Bi catalyst can selectively reduce CO to formate with high selectivity (≈90% faradaic efficiency), large partial current density (24.53 mA cm at -1.36 V), and long-term stability (up to 14.5 h), superior to most of the Bi-based catalysts. The hybrid Bi/In O interfaces of core-shell C@In O @Bi will stabilize the key intermediate HCOO* and suppress CO poisoning, benefiting the CO RR selectivity and stability, while the internal cavity of core-shell structure will improve the reaction kinetics because of the large specific surface area and the enhancement of ion shuttle and electron transfer. Furthermore, the nano-limited domain effect of outmost carbon prevent active components from oxidation and agglomeration, helpful for stabilizing the catalyst. This work offers valuable insights into core-shell structure engineering to promote practical CO conversion technology.
构建具有高活性、良好选择性和长期稳定性的电催化剂,用于电催化二氧化碳还原为甲酸是一项艰巨的挑战。在此,通过一种新颖的准微乳液方法,将铋和铟物种创新性地整合到均匀的异质球形结构中,并通过随后的一步相分离策略,由于熔点差异和 Kirkendall 效应以及碳结构的纳米限域效应,构建了一种新型 C@In O@Bi 核壳结构。这种核壳 C@In O@Bi 催化剂可以选择性地将 CO 还原为甲酸盐,具有高选择性(≈90%的法拉第效率)、大的部分电流密度(在-1.36 V 时为 24.53 mA cm)和长期稳定性(长达 14.5 小时),优于大多数基于 Bi 的催化剂。核壳 C@In O@Bi 的 Bi/In O 混合界面将稳定关键中间体 HCOO*并抑制 CO 中毒,有利于 CO RR 的选择性和稳定性,而核壳结构的内部空腔由于大的比表面积和离子穿梭和电子转移的增强,将提高反应动力学。此外,最外层碳的纳米限域域效应阻止活性组分的氧化和团聚,有助于稳定催化剂。这项工作为促进实用的 CO 转化技术的核壳结构工程提供了有价值的见解。