Suppr超能文献

调整氧化石墨烯和还原氧化石墨烯掺杂六方 BN 的电化学行为,用于高容量锂离子和钠离子电池负极。

Tuning the electrochemical behavior of graphene oxide and reduced graphene oxide doping hexagonal BN for high capacity negative electrodes for Li and Na ion batteries.

机构信息

Department of Physics, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh.

Department of Physics, Jahangirnagar University, Dhaka, Bangladesh.

出版信息

Phys Chem Chem Phys. 2023 Feb 1;25(5):4047-4061. doi: 10.1039/d2cp05451e.

Abstract

Inspired by the recently synthesized hexagonal boron nitride (h-BN) doped graphene, density functional theory (DFT) calculations were performed to evaluate the anodic properties of BN doped graphene (BN-G), graphene oxide (BN-GO) and reduced graphene oxide (BN-rGO) for Li/Na ion batteries (LIBs/NIBs). Our proposed materials show a semiconducting character with band gaps of 1.4, 0.67 and 0.45 eV for BN-G, BN-GO and BN-rGO, respectively. Among the three nanosheets, BN-rGO shows strong interaction behavior with Li/Na whereby the defected site exhibits high reactivity compared to the other adsorption sites. The adsorption energies are found to be about -4.72/-4.10 eV for Li/Na at the defected site, which are consecutively 3 and 2 times stronger than the adsorption energies of BN-G and BN-GO. It is predicted by partial density of states (PDOS) and band structure analysis that the nanosheets will exhibit metallic behavior through the adsorption process. Relatively low diffusion barriers are found to be about 0.47 and 0.22 eV when Li and Na moved from one adsorption site to another nearby adsorption site on BN-rGO. Among them, BN-rGO shows a high specific capacity, about 1583 and 1319 mA h g for LIBs and NIBs. Therefore, the suitable adsorption energy with metallic behavior of the nanosheet combined with the high specific capacity confirm that BN-rGO is a promising anode candidate for Li/Na ion batteries.

摘要

受最近合成的六方氮化硼 (h-BN) 掺杂石墨烯的启发,我们通过密度泛函理论 (DFT) 计算来评估 BN 掺杂石墨烯 (BN-G)、氧化石墨烯 (BN-GO) 和还原氧化石墨烯 (BN-rGO) 作为锂离子/钠离子电池 (LIBs/NIBs) 正极材料的性能。我们提出的材料具有半导体特性,BN-G、BN-GO 和 BN-rGO 的带隙分别为 1.4、0.67 和 0.45 eV。在这三种纳米片中,BN-rGO 与 Li/Na 表现出很强的相互作用,其中缺陷位比其他吸附位具有更高的反应活性。吸附能在缺陷位上约为 -4.72/-4.10 eV,分别是 BN-G 和 BN-GO 的 3 倍和 2 倍。通过部分态密度 (PDOS) 和能带结构分析预测,纳米片将通过吸附过程表现出金属行为。当 Li 和 Na 从 BN-rGO 上一个吸附位移动到另一个附近吸附位时,发现相对较低的扩散势垒约为 0.47 和 0.22 eV。其中,BN-rGO 作为锂离子电池和钠离子电池的比容量分别高达 1583 和 1319 mA h g-1。因此,合适的吸附能和金属行为与高比容量相结合,证实 BN-rGO 是一种很有前途的锂离子/钠离子电池正极材料。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验