Moalla Ali, Noei Maziar, Khazali Fereydoon, Maleki Afsaneh
Department of Chemistry, Omidiyeh Branch, Islamic Azad University, Omidiyeh, Iran.
Department of Chemistry, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran.
J Mol Graph Model. 2020 Jun;97:107567. doi: 10.1016/j.jmgm.2020.107567. Epub 2020 Feb 7.
Although Li-ion batteries are extensively applied, short lifetime, high cost, and safety problems limit their application. Na-ion batteries (NIB) might be an alternative to the Li-ion owing to wide availability, low cost, and nontoxicity of Na. Here, we performed density functional theory calculations to investigate the possible application of a graphyne-like BN layer (BN-yne) in the anode of NIBs. The adsorption energies of Na and Na on the BN-yne are predicted to be -15.3 and -54.6 kcal/mol, respectively. It was found that the maximum barrier energy for migration of Na atom and Na ion through BN-yne surface is about 20.2 and 16.5 kcal/mol, respectively. The calculated cell voltage for the BN-yne are predicted to be and 1.70 V. Using an electric field of -0.02 a. u. much more strengthens the interaction of Na with the BN-yne compared to the Na atom, increasing the cell voltage of NIB to 2.10 eV. We showed that a high Na storage capacity (NaBN), high cell voltage and diffusion ability of BN-yne make it a promising candidate for the NIB anode material.
尽管锂离子电池得到了广泛应用,但寿命短、成本高和安全问题限制了它们的应用。由于钠的广泛可得性、低成本和无毒,钠离子电池(NIB)可能是锂离子电池的一种替代品。在此,我们进行了密度泛函理论计算,以研究类石墨炔的氮化硼层(BN-炔)在钠离子电池阳极中的可能应用。预计钠和钠离子在BN-炔上的吸附能分别为-15.3和-54.6千卡/摩尔。结果发现,钠原子和钠离子通过BN-炔表面迁移的最大势垒能量分别约为20.2和16.5千卡/摩尔。计算得出的BN-炔的电池电压预计为1.70伏。与钠原子相比,使用-0.02原子单位的电场大大增强了钠与BN-炔的相互作用,将钠离子电池的电池电压提高到2.10电子伏特。我们表明,BN-炔的高钠存储容量(NaBN)、高电池电压和扩散能力使其成为钠离子电池阳极材料的一个有前途的候选者。