Suppr超能文献

热带稀树草原和森林中广食性和特化物种的树皮产生。

Bark production of generalist and specialist species across savannas and forests in the Cerrado.

机构信息

Lab of Vegetation Ecology, Universidade Estadual Paulista (UNESP), Instituto de Biociências, Avenida 24-A, 1515, Rio Claro, 13506-900, Brazil.

AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France.

出版信息

Ann Bot. 2023 Apr 28;131(4):613-621. doi: 10.1093/aob/mcad014.

Abstract

BACKGROUND AND AIMS

Bark allows species to survive fire, protecting their inner tissues and allowing new branches to resprout from aerial buds. Thus, bark production is likely to be selected with aerial bud protection in fire-prone ecosystems. By considering the coexistence of fire-prone and fire-free ecosystems, in addition to the different impacts of flames on different growth forms, in this study we tested whether: (1) species from areas with higher fire frequencies have a faster bark production; (2) bark growth rate differs between trees and shrubs; (3) generalists adjust their bark production according to their environment (fire-prone or fire-free ecosystems); and (4) fast bark production results in better aerial bud protection.

METHODS

We sampled two different types of forests and savannas in the Cerrado and registered every woody individual with height between 1.5 and 3 m tall (directly exposed to the flames). For the 123 species registered, we sampled three different individuals in each vegetation type where the species occurred to assess their bark production and aerial bud protection. We then checked, for each species, their preferred habitat (savanna and forest specialists or generalists) and their predominant growth form.

KEY RESULTS

A minimal threshold of 0.13 mm per growth unit of bark production differentiated woody communities from savannas and forests. Shrubs and trees did not differ in terms of bark growth rate, despite being exposed to the flames in a different manner. Generalist species in savannas were able to produce bark above the threshold. However, when these species were in forests they produced bark below the threshold. Finally, a higher bark growth rate accounted for a better aerial bud protection.

CONCLUSIONS

Generalist species are likely to be capable of displaying plasticity in their bark production, which could be important for their success in contrasting ecosystems. The relationship between aerial bud protection and bark growth rate suggests that bark production plays an important role in protecting the dormant buds, in addition to being selected in fire-prone ecosystems.

摘要

背景和目的

树皮使物种能够在火灾中存活,保护其内部组织,并允许新的树枝从空中芽中重新萌发。因此,在易发生火灾的生态系统中,树皮的产生很可能与空中芽的保护一起被选择。通过考虑到易发生火灾和无火灾的生态系统的共存,以及火焰对不同生长形式的不同影响,本研究测试了以下几点:(1)来自火灾频率较高地区的物种是否具有更快的树皮产生速度;(2)树皮生长速度在树木和灌木之间是否存在差异;(3)广食性物种是否根据其环境(易发生火灾或无火灾的生态系统)调整其树皮产生;(4)快速的树皮产生是否能更好地保护空中芽。

方法

我们在塞拉多(Cerrado)采样了两种不同类型的森林和热带稀树草原,并记录了每一个高度在 1.5 到 3 米之间(直接暴露在火焰下)的木本个体。对于登记的 123 个物种,我们在每个物种出现的植被类型中采样了三个不同的个体,以评估它们的树皮产生和空中芽保护。然后,我们检查了每个物种的首选栖息地(热带稀树草原和森林专家或广食性物种)和其主要生长形式。

主要结果

树皮产生的最小阈值为 0.13 毫米/生长单位,可将木本群落与热带稀树草原和森林区分开来。尽管灌木和树木暴露在火焰中的方式不同,但它们的树皮生长速度没有差异。热带稀树草原的广食性物种能够产生高于阈值的树皮。然而,当这些物种处于森林中时,它们产生的树皮低于阈值。最后,较高的树皮生长速度可以更好地保护空中芽。

结论

广食性物种可能具有在树皮产生方面的可塑性,这对它们在不同生态系统中的成功可能很重要。空中芽保护和树皮生长速度之间的关系表明,树皮产生除了在易发生火灾的生态系统中被选择外,还在保护休眠芽方面发挥了重要作用。

相似文献

2
Bud protection: a key trait for species sorting in a forest-savanna mosaic.
New Phytol. 2015 Sep;207(4):1052-60. doi: 10.1111/nph.13406. Epub 2015 Apr 9.
4
Shifts in functional traits elevate risk of fire-driven tree dieback in tropical savanna and forest biomes.
Glob Chang Biol. 2016 Mar;22(3):1235-43. doi: 10.1111/gcb.13110. Epub 2016 Jan 4.
5
Convergence of bark investment according to fire and climate structures ecosystem vulnerability to future change.
Ecol Lett. 2017 Mar;20(3):307-316. doi: 10.1111/ele.12725. Epub 2017 Jan 11.
6
Solutions to fire and shade: resprouting, growing tall and the origin of Eurasian temperate broadleaved forest.
Biol Rev Camb Philos Soc. 2023 Apr;98(2):643-661. doi: 10.1111/brv.12923. Epub 2022 Nov 28.
7
The role of bud protection and bark density in frost resistance of savanna trees.
Plant Biol (Stuttg). 2020 Jan;22(1):55-61. doi: 10.1111/plb.13050. Epub 2019 Oct 16.
10
Fire and legume germination in a tropical savanna: ecological and historical factors.
Ann Bot. 2019 Jul 8;123(7):1219-1229. doi: 10.1093/aob/mcz028.

引用本文的文献

2
Why woody plant modularity through time and space must be integrated in fire research?
AoB Plants. 2023 May 23;15(3):plad029. doi: 10.1093/aobpla/plad029. eCollection 2023 Jun.

本文引用的文献

1
Inner bark as a crucial tissue for non-structural carbohydrate storage across three tropical woody plant communities.
Plant Cell Environ. 2021 Jan;44(1):156-170. doi: 10.1111/pce.13903. Epub 2020 Oct 29.
3
The ecology and significance of below-ground bud banks in plants.
Ann Bot. 2019 Jul 8;123(7):1099-1118. doi: 10.1093/aob/mcz051.
4
Evolutionary history of fire-stimulated resprouting, flowering, seed release and germination.
Biol Rev Camb Philos Soc. 2019 Jun;94(3):903-928. doi: 10.1111/brv.12483. Epub 2018 Nov 28.
5
Steal the light: shade vs fire adapted vegetation in forest-savanna mosaics.
New Phytol. 2018 Jun;218(4):1419-1429. doi: 10.1111/nph.15117. Epub 2018 Mar 31.
6
Unearthing belowground bud banks in fire-prone ecosystems.
New Phytol. 2018 Mar;217(4):1435-1448. doi: 10.1111/nph.14982. Epub 2018 Jan 15.
7
The biodiversity cost of carbon sequestration in tropical savanna.
Sci Adv. 2017 Aug 30;3(8):e1701284. doi: 10.1126/sciadv.1701284. eCollection 2017 Aug.
8
Bud protection: a key trait for species sorting in a forest-savanna mosaic.
New Phytol. 2015 Sep;207(4):1052-60. doi: 10.1111/nph.13406. Epub 2015 Apr 9.
10
Fire drives functional thresholds on the savanna-forest transition.
Ecology. 2013 Nov;94(11):2454-63. doi: 10.1890/12-1629.1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验