Division of Trauma, Burn, and Critical Care, Department of Surgery, University of Washington, Seattle.
University of Washington School of Public Health, Seattle.
JAMA Netw Open. 2023 Jan 3;6(1):e2251445. doi: 10.1001/jamanetworkopen.2022.51445.
Multiple classification methods are used to identify sepsis from existing data. In the trauma population, it is unknown how administrative methods compare with clinical criteria for sepsis classification.
To characterize the agreement between 3 approaches to sepsis classification among critically ill patients with trauma and compare the sepsis-associated risk of adverse outcomes when each method was used to define sepsis.
DESIGN, SETTING, AND PARTICIPANTS: This retrospective cohort study used data collected between January 1, 2012, and December 31, 2020, from patients aged 16 years or older with traumatic injury, admitted to the intensive care unit of a single-institution level 1 trauma center and requiring invasive mechanical ventilation for at least 3 days. Statistical analysis was conducted from August 1, 2021, to March 31, 2022.
Hospital-acquired sepsis, as classified by 3 methods: a novel automated clinical method based on data from the electronic health record, the National Trauma Data Bank (NTDB), and explicit and implicit medical billing codes.
The primary outcomes were chronic critical illness and in-hospital mortality. Secondary outcomes included number of days in an intensive care unit, number of days receiving mechanical ventilation, discharge to a skilled nursing or long-term care facility, and discharge to home without assistance.
Of 3194 patients meeting inclusion criteria, the median age was 49 years (IQR, 31-64 years), 2380 (74%) were male, and 2826 (88%) sustained severe blunt injury (median Injury Severity Score, 29 [IQR, 21-38]). Sepsis was identified in 747 patients (23%) meeting automated clinical criteria, 118 (4%) meeting NTDB criteria, and 529 (17%) using medical billing codes. The Light κ value for 3-way agreement was 0.16 (95% CI, 0.14-0.19). The adjusted relative risk of chronic critical illness was 9.9 (95% CI, 8.0-12.3) for sepsis identified by automated clinical criteria, 5.0 (95% CI, 3.4-7.3) for sepsis identified by the NTDB, and 4.5 (95% CI, 3.6-5.6) for sepsis identified using medical billing codes. The adjusted relative risk for in-hospital mortality was 1.3 (95% CI, 1.0-1.6) for sepsis identified by automated clinical criteria, 2.7 (95% CI, 1.7-4.3) for sepsis identified by the NTDB, and 1.0 (95% CI, 0.7-1.2) for sepsis identified using medical billing codes.
In this cohort study of critically ill patients with trauma, administrative methods misclassified sepsis and underestimated the incidence and severity of sepsis compared with an automated clinical method using data from the electronic health record. This study suggests that an automated approach to sepsis classification consistent with Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) clinical criteria is feasible and may improve existing approaches to health services and population-based research in this population.
重要性:目前有多种分类方法可用于从现有数据中识别脓毒症。在创伤患者中,尚不清楚行政方法与脓毒症分类的临床标准相比如何。
目的:描述 3 种方法用于识别创伤重症监护患者中脓毒症的特征,并比较每种方法用于定义脓毒症时与不良结局相关的脓毒症风险。
设计、地点和参与者:这是一项回顾性队列研究,使用了 2012 年 1 月 1 日至 2020 年 12 月 31 日期间从一家机构 1 级创伤中心重症监护病房收治的 16 岁及以上创伤患者的数据,这些患者需要接受至少 3 天的有创机械通气。统计分析于 2021 年 8 月 1 日至 2022 年 3 月 31 日进行。
暴露:医院获得性脓毒症,由 3 种方法分类:一种基于电子健康记录、国家创伤数据库(NTDB)和明确及隐含医疗计费代码的数据的新型自动化临床方法。
主要结局和措施:主要结局是慢性危重病和院内死亡率。次要结局包括重症监护病房天数、机械通气天数、康复至熟练护理或长期护理机构、康复至无需协助的家庭。
结果:在符合纳入标准的 3194 名患者中,中位年龄为 49 岁(IQR,31-64 岁),2380 名(74%)为男性,2826 名(88%)发生严重钝性损伤(中位数损伤严重程度评分,29 [IQR,21-38])。747 名(23%)符合自动化临床标准、118 名(4%)符合 NTDB 标准、529 名(17%)符合医疗计费代码标准的患者被诊断为脓毒症。3 种方法间一致性的 Light κ 值为 0.16(95%CI,0.14-0.19)。使用自动化临床标准识别的脓毒症的慢性危重病调整后相对风险为 9.9(95%CI,8.0-12.3),使用 NTDB 识别的脓毒症为 5.0(95%CI,3.4-7.3),使用医疗计费代码识别的脓毒症为 4.5(95%CI,3.6-5.6)。使用自动化临床标准识别的脓毒症的院内死亡率调整后相对风险为 1.3(95%CI,1.0-1.6),使用 NTDB 识别的脓毒症为 2.7(95%CI,1.7-4.3),使用医疗计费代码识别的脓毒症为 1.0(95%CI,0.7-1.2)。
结论:在这项对创伤重症监护患者的队列研究中,与使用电子健康记录数据的自动化临床方法相比,行政方法错误分类了脓毒症,并低估了脓毒症的发生率和严重程度。本研究表明,一种与第三版国际脓毒症和脓毒性休克定义(Sepsis-3)临床标准一致的脓毒症分类自动化方法是可行的,可能会改进该人群的医疗服务和基于人群的研究方法。