Suppr超能文献

利用关于多种风险的患者偏好数据为监管决策提供信息。

Use of Patient Preferences Data Regarding Multiple Risks to Inform Regulatory Decisions.

作者信息

Montano-Campos J Felipe, Gonzalez Juan Marcos, Rickert Timothy, Fairchild Angelyn O, Levitan Bennett, Reed Shelby D

机构信息

Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA.

Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, USA.

出版信息

MDM Policy Pract. 2023 Jan 11;8(1):23814683221148715. doi: 10.1177/23814683221148715. eCollection 2023 Jan-Jun.

Abstract

UNLABELLED

Risk-tolerance measures from patient-preference studies typically focus on individual adverse events. We recently introduced an approach that extends maximum acceptable risk (MAR) calculations to simultaneous maximum acceptable risk thresholds (SMART) for multiple treatment-related risks. We extend these methods to include the computation and display of confidence intervals and apply the approach to 3 published discrete-choice experiments to evaluate its utility to inform regulatory decisions. We generate MAR estimates and SMART curves and compare them with trial-based benefit-risk profiles of select treatments for depression, psoriasis, and thyroid cancer. In the depression study, SMART curves with 70% to 95% confidence intervals portray which combinations of 2 adverse events would be considered acceptable. In the psoriasis example, the asymmetric confidence intervals for the SMART curve indicate that relying on independent MARs versus SMART curves when there are nonlinear preferences can lead to decisions that could expose patients to greater risks than they would accept. The thyroid cancer application shows an example in which the clinical incidence of each of 3 adverse events is lower than the single-event MARs for the expected treatment benefit, yet the collective risk profile surpasses acceptable levels when considered jointly. Nonrandom sample of studies. When evaluating conventional MARs in which the observed incidences are near the estimated MARs or where preferences demonstrate diminishing marginal disutility of risk, conventional MAR estimates will overstate risk acceptance, which could lead to misinformed decisions, potentially placing patients at greater risk of adverse events than they would accept. The SMART method, herein extended to include confidence intervals, provides a reproducible, transparent evidence-based approach to enable decision makers to use data from discrete-choice experiments to account for multiple adverse events.

HIGHLIGHTS

Estimates of maximum acceptable risk (MAR) for a defined treatment benefit can be useful to inform regulatory decisions; however, the conventional metric considers one adverse event at a time.This article applies a new approach known as SMART (simultaneous maximum acceptable risk thresholds) that accounts for multiple adverse events to 3 published discrete-choice experiments.Findings reveal that conventional MARs could lead decision makers to accept a treatment based on individual risks that would not be acceptable if multiple risks are considered simultaneously.

摘要

未标注

患者偏好研究中的风险承受度测量通常聚焦于个体不良事件。我们最近引入了一种方法,将最大可接受风险(MAR)计算扩展到针对多种治疗相关风险的同时最大可接受风险阈值(SMART)。我们将这些方法扩展到包括置信区间的计算和展示,并将该方法应用于3项已发表的离散选择实验,以评估其对监管决策提供信息的效用。我们生成MAR估计值和SMART曲线,并将它们与抑郁症、银屑病和甲状腺癌的选定治疗基于试验的获益-风险概况进行比较。在抑郁症研究中,具有70%至95%置信区间的SMART曲线描绘了哪两种不良事件的组合会被认为是可接受的。在银屑病的例子中,SMART曲线的不对称置信区间表明,当存在非线性偏好时,依赖独立的MAR与SMART曲线相比,可能导致决策使患者面临比他们愿意接受的更大风险。甲状腺癌的应用展示了一个例子,其中3种不良事件各自的临床发生率低于预期治疗获益的单事件MAR,但当联合考虑时,总体风险概况超过了可接受水平。研究的非随机样本。在评估观察到的发生率接近估计的MAR或偏好显示风险的边际负效用递减的传统MAR时,传统MAR估计会高估风险接受度,这可能导致错误的决策,潜在地使患者面临比他们愿意接受的更大的不良事件风险。扩展到包括置信区间的SMART方法提供了一种可重复、透明的基于证据的方法,使决策者能够利用离散选择实验的数据来考虑多种不良事件。

要点

针对特定治疗获益的最大可接受风险(MAR)估计值对监管决策可能有用;然而,传统指标一次只考虑一个不良事件。本文将一种称为SMART(同时最大可接受风险阈值)的考虑多种不良事件的新方法应用于3项已发表的离散选择实验。研究结果表明,传统的MAR可能导致决策者基于个体风险接受一种治疗,如果同时考虑多种风险,这种治疗是不可接受的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45c1/9841858/6fcb9dd28521/10.1177_23814683221148715-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验