Department of Materials, University of Manchester, ManchesterM13 9PL, U.K.
SuperSTEM Laboratory, STFC Daresbury Campus, DaresburyWA4 4AD, U.K.
ACS Appl Mater Interfaces. 2023 Feb 1;15(4):5071-5085. doi: 10.1021/acsami.2c16587. Epub 2023 Jan 19.
Donor-doped TiO-based materials are promising thermoelectrics (TEs) due to their low cost and high stability at elevated temperatures. Herein, high-performance Nb-doped TiO thick films are fabricated by facile and scalable screen-printing techniques. Enhanced TE performance has been achieved by forming high-density crystallographic shear (CS) structures. All films exhibit the same matrix rutile structure but contain different nano-sized defect structures. Typically, in films with low Nb content, high concentrations of oxygen-deficient {121} CS planes are formed, while in films with high Nb content, a high density of twin boundaries are found. Through the use of strongly reducing atmospheres, a novel Al-segregated {210} CS structure is formed in films with higher Nb content. By advanced aberration-corrected scanning transmission electron microscopy techniques, we reveal the nature of the {210} CS structure at the nano-scale. These CS structures contain abundant oxygen vacancies and are believed to enable energy-filtering effects, leading to simultaneous enhancement of both the electrical conductivity and Seebeck coefficients. The optimized films exhibit a maximum power factor of 4.3 × 10 W m K at 673 K, the highest value for TiO-based TE films at elevated temperatures. Our modulation strategy based on microstructure modification provides a novel route for atomic-level defect engineering which should guide the development of other TE materials.
施主掺杂 TiO 基材料由于其在高温下低成本和高稳定性,是很有前途的热电(TE)材料。在此,通过简便且可扩展的丝网印刷技术制备了高性能 Nb 掺杂 TiO 厚膜。通过形成高密度的晶界剪切(CS)结构,实现了优异的 TE 性能。所有薄膜均表现出相同的金红石基质结构,但含有不同纳米级的缺陷结构。通常,在 Nb 含量低的薄膜中,形成了高浓度的氧空位{121} CS 面,而在 Nb 含量高的薄膜中,则发现了高密度的孪晶界。通过使用强还原气氛,在 Nb 含量较高的薄膜中形成了新型的 Al 偏析{210} CS 结构。通过先进的像差校正扫描透射电子显微镜技术,我们在纳米尺度上揭示了{210} CS 结构的本质。这些 CS 结构含有丰富的氧空位,据信可以实现能量过滤效应,从而同时提高电导率和 Seebeck 系数。优化后的薄膜在 673 K 时表现出最大的功率因子为 4.3×10 W m K ,这是高温下 TiO 基 TE 薄膜的最高值。我们基于微观结构改性的调制策略为原子级缺陷工程提供了一条新途径,这应该会指导其他 TE 材料的发展。