School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, Central South University, Changsha 410083, China.
University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China.
Sci Bull (Beijing). 2023 Jan 30;68(2):180-191. doi: 10.1016/j.scib.2023.01.010. Epub 2023 Jan 10.
Layered oxides have attracted unprecedented attention for their outstanding performance in sodium-ion battery cathodes. Among them, the two typical candidates P2 and O3 type materials generally demonstrate large diversities in specific capacity and cycling endurance with their advantages. Thus, composite materials that contain both P2 and O3 have been widely designed and constructed. Nevertheless, the anionic/cationic ions' behavior and structural evolution in such complex structures remain unclear. In this study, a deep analysis of an advanced NaNiMgMnO material that contains 78.39 wt% P2 phase and 21.61 wt% O3 phase is performed based on two typical cathodes P2 NaNiMn and O3 NaNiMnO that have the same elemental constitution but different crystal structures. Structural analysis and density functional theory (DFT) calculations suggest that the composite is preferred to form a symbiotic structure at the atomic level, and the complex lattice texture of the biphase structure can block unfavorable ion and oxygen migration in the electrode process. Consequently, the biphase structure has significantly improved the electrochemical performance and kept preferable anionic oxygen redox reversibility. Furthermore, the hetero-epitaxy-like structure of the intergrowth of P2 and O3 structures share multi-phase boundaries, where the inconsistency in electrochemical behavior between P2 and O3 phases leads to an interlocking effect to prevent severe structural collapse and relieves the lattice strain from Na de/intercalation. Hence, the symbiotic P2/O3 composite materials exhibited a preferable capacity and cyclability (∼130 mAh g at 0.1 C, 73.1% capacity retention after 200 cycles at 1 C), as well as reversible structural evolution. These findings confirmed the advantages of using the bi/multi-phase cathode for high-energy Na-ion batteries.
层状氧化物因其在钠离子电池正极材料中的优异性能而受到前所未有的关注。其中,P2 和 O3 型材料作为两种典型的候选材料,通常具有较大的比容量和循环稳定性差异。因此,已广泛设计和构建了包含 P2 和 O3 两种相的复合材料。然而,在这种复杂结构中,阴离子/阳离子的行为和结构演变仍不清楚。在本研究中,基于具有相同元素组成但不同晶体结构的两个典型正极 P2 NaNiMn 和 O3 NaNiMnO,对含有 78.39 wt% P2 相和 21.61 wt% O3 相的先进 NaNiMgMnO 材料进行了深入分析。结构分析和密度泛函理论(DFT)计算表明,复合材料在原子水平上优先形成共生结构,双相结构的复杂晶格结构可以阻止电极过程中不利的离子和氧迁移。因此,双相结构显著提高了电化学性能,保持了较好的阴离子氧氧化还原可逆性。此外,P2 和 O3 结构的共生长相间的异质外延状结构具有多相界,其中 P2 和 O3 相之间电化学行为的不一致导致了联锁效应,以防止严重的结构塌陷,并减轻钠脱嵌过程中的晶格应变。因此,共生 P2/O3 复合材料表现出较好的容量和循环性能(在 0.1 C 时约为 130 mAh g,在 1 C 时 200 次循环后容量保持率为 73.1%)以及可逆的结构演变。这些发现证实了使用双/多相正极材料用于高能钠离子电池的优势。