Simons Initiative for the Developing Brain, The University of Edinburgh, 15 George Square, Edinburgh, EH8 9XD, United Kingdom.
Centre for Discovery Brain Sciences, The University of Edinburgh, 15 George Square, Edinburgh, EH8 9XD, United Kingdom.
BMC Neurosci. 2023 Jan 19;24(1):5. doi: 10.1186/s12868-022-00771-3.
Autism spectrum condition or 'autism' is associated with numerous genetic risk factors including the polygenic 16p11.2 microdeletion. The balance between excitatory and inhibitory neurons in the cerebral cortex is hypothesised to be critical for the aetiology of autism making improved understanding of how risk factors impact on the development of these cells an important area of research. In the current study we aim to combine bioinformatics analysis of human foetal cerebral cortex gene expression data with anatomical and electrophysiological analysis of a 16p11.2 rat model to investigate how genetic risk factors impact on inhibitory neuron development.
We performed bioinformatics analysis of single cell transcriptomes from gestational week (GW) 8-26 human foetal prefrontal cortex and anatomical and electrophysiological analysis of 16p11.2 rat cerebral cortex and hippocampus at post-natal day (P) 21.
We identified a subset of human interneurons (INs) first appearing at GW23 with enriched expression of a large fraction of risk factor transcripts including those expressed from the 16p11.2 locus. This suggests the hypothesis that these foetal INs are vulnerable to mutations causing autism. We investigated this in a rat model of the 16p11.2 microdeletion. We found no change in the numbers or position of either excitatory or inhibitory neurons in the somatosensory cortex or CA1 of 16p11.2 rats but found that CA1 Sst INs were hyperexcitable with an enlarged axon initial segment, which was not the case for CA1 pyramidal cells.
The human foetal gene expression data was acquired from cerebral cortex between gestational week (GW) 8 to 26. We cannot draw inferences about potential vulnerabilities to genetic autism risk factors for cells not present in the developing cerebral cortex at these stages. The analysis 16p11.2 rat phenotypes reported in the current study was restricted to 3-week old (P21) animals around the time of weaning and to a single interneuron cell-type while in human 16p11.2 microdeletion carriers symptoms likely involve multiple cell types and manifest in the first few years of life and on into adulthood.
We have identified developing interneurons in human foetal cerebral cortex as potentially vulnerable to monogenic autism risk factors and the 16p11.2 microdeletion and report interneuron phenotypes in post-natal 16p11.2 rats.
自闭症谱系障碍或“自闭症”与许多遗传风险因素有关,包括多基因 16p11.2 微缺失。皮质中兴奋性和抑制性神经元之间的平衡被认为对自闭症的发病机制至关重要,因此,更好地了解风险因素如何影响这些细胞的发育是一个重要的研究领域。在本研究中,我们旨在结合人类胎儿大脑皮层基因表达数据的生物信息学分析以及 16p11.2 大鼠模型的解剖学和电生理学分析,研究遗传风险因素如何影响抑制性神经元的发育。
我们对来自妊娠第 8 至 26 周的人类胎儿前额叶皮质的单细胞转录组进行了生物信息学分析,并对出生后第 21 天的 16p11.2 大鼠大脑皮层和海马体进行了解剖学和电生理学分析。
我们鉴定出一组人类中间神经元(INs),它们最早在妊娠 23 周出现,这些细胞的大量风险因子转录本表达丰富,包括来自 16p11.2 基因座的转录本。这表明这些胎儿 INs 易受导致自闭症的突变影响。我们在 16p11.2 微缺失的大鼠模型中对此进行了研究。我们发现,16p11.2 大鼠的感觉皮层或 CA1 中兴奋性或抑制性神经元的数量或位置均无变化,但发现 CA1 Sst INs 的轴突起始段增大,而 CA1 锥体神经元则不然。
人类胎儿基因表达数据来自妊娠第 8 周至 26 周的大脑皮层。我们不能推断出这些细胞对发育中的大脑皮层在这些阶段不存在的遗传自闭症风险因素的潜在脆弱性。当前研究报告的 16p11.2 大鼠表型分析仅限于断奶前后 3 周龄(P21)的动物,以及一种中间神经元细胞类型,而在人类 16p11.2 微缺失携带者中,症状可能涉及多种细胞类型,并在生命的头几年以及成年期表现出来。
我们已经确定了人类胎儿大脑皮层中的发育中间神经元可能容易受到单基因自闭症风险因素和 16p11.2 微缺失的影响,并报告了产后 16p11.2 大鼠的中间神经元表型。